INTRODUCTION TO 360° VIDEO Oliver Wang

Adobe Research

OUTLINE

How do we represent it?

OUTLINE

Formats

How do we represent it?

OUTLINE

How do we create it?

Stitching

How do we represent it?

OUTLINE

How do we create it?

What can we do with it?

Stabilization

How do we represent it?

OUTLINE

How do we create it?

What can we do with it?

What can't we do with it?

Future Areas

How do we represent it?

OUTLINE

How do we create it?

What can we do with it?

What can't we do with it?

360° VIDEO VS "FULL" VR VIDEO

6DoF

Mozilla Developer Network - WebVR Concepts

ONE OF THE MOST POPULAR FORMS OF VR

facebook 360

VS

Capture

Display

360° VIDEO VS "FULL"

How do we represent it?

OUTLINE

How do we create it?

What can we do with it?

What can't we do with it?

360° VIDEO FORMATS

360° VIDEO FORMATS

EQUIRECTANGULAR

EQUIRECTANGULAR

- Positive
 - Visually interpretable
 - Easy to process

- Negative
 - Distortion on poles
 - Low pixel density on horizon

CUBEMAPS

https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/

Graphics pipeline friendly

•

•

Low distortion (25% storage reduction)

CUBEMAPS

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/

Hard to interpret/process

Standard Cubemap

EQUIANGULAR CUBEMAPS

Equi-Angular Cubemap

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/

Equirectangular Projection

EQUIANGULAR CUBEMAPS

Cubemap

Equiangular Cubemap

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/

EQUIANGULAR CUBEMAPS

Video frame as viewed in VR headset

Equirectangular

EAC

Equirectangular

EAC

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/

https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/

PYRAMIDS

https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/

360° VIDEO CONTENT CREATION

What is 360 video?

How do we represent it?

How do we create it?

What can we do with it?

What can't we do with it?

MULTI-LENS CAMERAS

Image Alignment and Stitching [Szeliski, Richard 2005]

STITCHING

PARALLAX ARTIFACTS

different projection centers

PARALLAX COMPENSATION

http://sintel.is.tue.mpg.de/

Optical Flow

Mesh Warping

HIGH-LEVEL PIPELINE - INPUT

Panoramic Video from Unstructured Camera Arrays [Perazzi et al. Eurographics 2015]

REFERENCE PROJECTION

PARALLAX COMPENSATION

PARALLAX COMPENSATION

BLENDING

Slides courtesy of Federico Perazzi, Disney Research

A Multiresolution Spline With Application to Image Mosaics [Burt and Adelson 1983]

BLENDING

Slides courtesy of Federico Perazzi, Disney Research

Slides courtesy of Federico Perazzi, Disney Research

360 Degree Panorama

ANOTHER WAY TO THINK ABOUT IT

Rich360: Optimized Spherical Representation from Structured Panoramic Camera Arrays [Lee et al. SIGGRAPH 2016]

MESH DEFORMATION

DEFORMABLE SPHERICAL PROJECTION SURFACE

Recovered 3D point

DEFORMABLE SPHERICAL PROJECTION SURFACE

Recovered 3D point

DEFORMABLE SPHERICAL PROJECTION

SURFACE

Rich360

GCW

STCPW

NON-UNIFORM RAY SAMPLING

NON-UNIFORM RAY SAMPLING

Slides courtesy of Jungjin L

e. KAIST

Rich360:Non-uniform Ray Sampling

1977

1879

16hvik

The Equirectangular Projection

17.

111

ich i

ALL DESCRIPTION

出의 변

Slides courtesy of Jungjin Lee, KAIST

3h

360° Video Processing

What is 360 video?

How do we represent it?

How do we create it?

360° VIDEO STABILIZATION [Johannes Kopf, SIGGRAPH Asia 2016]

What can we do with it?

What can't we do with it?

FIT MOTION MODEL + SMOOTHING

Narrow FOV

TRACK

2D or 3D

Cropped

TRACK

FIT MOTION MODEL + SMOOTHING

Hybrid 3D-2D

Full 360

Not Cropped

Input video

Pure-rotation stabilization

Translation effects

Rolling shutter/lens deformation

Pure-rotation

Deformed-rotation

CREATING NARROW FOV VIDEOS FROM 360 VIDEO

Pano2Vid: Automatic Cinematography for Watching 360° Video [Su et al. ACCV 2016]

Input: 360° Video

PANO2VID

Output: normal-field-of-view (NFOV) Video

PANO2VID

PANO2VID

HUMAN VALIDATION

HumanEdit Screenshot

HumanEdit NFOV Video

HUMAN VALIDATION

Quality

4

0

	# videos	Total length
360° videos	86	7.3 hours
HumanCam	9,171	343 hours

AutoCam performs the best Justified by multiple metrics

Making 360° Video Watchable in 2D: Learning Videography for Click Free Viewing [Su and Grauman CVPR 2017]

360 Video (Equirectangular) + Camera Trajectories

Ours NFOV Video

AutoCam (Su et al. 2016)

How do we represent it?

FUTURE PROBLEMS

How do we create it?

What can we do with it?

What can't we do with it?

PERCEPTION

Gaze Visualization for Immersive Video Thomas Löwe, Michael Stengel, Emmy-Charlotte Förster, Steve Grogorick, Marcus Magnor Eye Tracking and Visualization (Springer), 2017

Saliency in VR: How do people explore virtual environments? Vincent Sitzmann, Ana Serrano, Amy Pavel, Maneesh Agrawala, Diego Gutierrez, Gordon Wetzstein. Arxiv 2016

CINEMATOGRAPHY RULES

Constraint on camera motion

• Zooms

• Cuts (coming up)

• Lighting

SPATIAL AUDIO

Core Sound TetraMic

https://en.wikipedia.org/wiki/Spherical_harmonics

360° VIDEO Oliver Wang Adobe Research