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Figure 1: We capture an input video with a consumer camera, estimate camera poses, reconstruct a mesh and uv-map it. We
extend Deferred Neural Rendering [Thies et al. 2019] (blue) to enable smooth extrapolation of novel viewpoints (orange).

ABSTRACT
Image-based rendering methods that support visually pleasing spec-
ular surface reflections require accurate surface geometry and a
large number of input images. Recent advances in neural scene
representations show excellent visual quality while requiring only
imperfect mesh proxies or no surface-based proxies at all. While pro-
viding state-of-the-art visual quality, the inference time of learned
models is usually too slow for interactive applications. While using
a casually captured circular video sweep as input, we extend De-
ferred Neural Rendering to extrapolate smooth viewpoints around
specular objects like a car.

CCS CONCEPTS
• Computer graphics→ Neural rendering.
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1 INTRODUCTION
The reconstruction quality of casually captured data and the cho-
sen scene representation constrain the development of interactive
visual experiences, in particular in real-world environments. Tradi-
tionally, view synthesis of real-world environments is performed
via image-based rendering (IBR), whose quality is mostly limited by
the accuracy of the available scene proxy geometry. If RGB-D video
is available, Park et al. [2020] show how to estimate scene properties
like material and environment map, and use a physically motivated
neural renderer for compositing Fresnel effects. We focus on neural
scene representations and rendering methods that do not rely on
explicit geometry at all, i.e. posed images only, or address the usage
of an imperfect proxy geometry. Volumetric scene representations,
e.g. NeRF [Mildenhall et al. 2020], register all input viewpoints
within a learned semi-transparent volume. While the results are
state-of-the-art visually, the inference time of the trained models
is prohibitively slow for interactive applications. Liu et al. [2020]
recently presented a sparse neural voxel representation suitable
for indoor environments that renders 1–2 fps. Image translation
methods used for image synthesis [Isola et al. 2017] show temporal
artefacts since there is no global registration of the input views
and they cannot be expected to work for non-diffuse scene objects.
Hedman et al. [2018] use an imperfect proxy geometry and learn
how to blend multiple images to mitigate rendering artefacts.

2 OUR APPROACH
The baseline of our system trains a generative adversarial network
(GAN) to learn a mapping from view-dependent neural features to
object appearance [Thies et al. 2019]. The learned features extracted
from the neural texture are interpreted by the generator as a learned
surface light field. We present a set of baseline extensions which
lead to improved extrapolation performance. Note that the baseline,

https://doi.org/10.1145/3415264.3425441
https://doi.org/10.1145/3415264.3425441


SA ’20 Posters, December 04-13, 2020, Virtual Event, Republic of Korea Bertel, Tomoto, Rao, Ortiz-Cayon, Holzer, Richardt

Mesh

v

Generator

Discriminator Optimize

Noise

Generator input

Background

Neural Features

Input

OutputTexture atlas Additional generator guides

uv-Map

Forward Backprop Tuning

(1)

(2)

(3)

(4) (5)

Baseline ExtensionsPoses

(6) (7)

(8) (9)

(10)
Optical centres Positions Normals

16-D 
per pixel

Neural features,
background,

guides

Inputs

(0)

Figure 2: Overview of our baseline approach (blue) and our proposed extensions (orange). See detailed description in the text.

similar to most learning-based techniques, is designed to interpolate
the training corpus. Deferred neural rendering is motivated by
adding learnable components to the deferred rendering pipeline
[Ritschel et al. 2012]. An overview of the baseline and our extensions
is given in Figure 2. Mathematically, the goal is to find a combination
of neural texture T and neural renderer R that minimizes the image
re-rendering loss L over the training dataset D of𝑀 posed images
D = {𝐼𝑘 , 𝑝𝑘 }𝑀𝑘=1 created from our capture. 𝐼𝑘 is the 𝑘-th image
of the training dataset and its corresponding camera pose 𝑝𝑘 , i.e.
viewing direction v and optical centre c. The optimal neural texture
T ∗ and renderer R∗ are obtained by solving:

T ∗,R∗ = argmin
T,R

∑
𝑑∈D

L(𝐴(𝑑) | 𝐹𝑑 (T ),𝐺𝑑 (R)). (1)

The baseline is obtained by setting 𝐹𝑑 (·) = 𝐺𝑑 (·) = 𝑖𝑑 . The augmen-
tation operator 𝐴(·) needs to return crops during training and its
input during testing (i.e. identity). Our extensions address (i) aug-
menting training samples 𝑑 ∈ D, (ii) adding inputs to the renderer
R, and (iii) injecting noise into the view- and thus dataset-dependent
feature generation 𝐹 (·) or the generator guides 𝐺 (·).

Forward pass. See (0–7) in Figure 2. Per data item 𝑑 ∈ D: (0)
Rasterize a viewpoint and obtain uv-map (deferred rendering). (1)
Use uv-map to look up texture atlasA. (2) Retrieve neural features 𝑓 ,
16-D texels, from A. The viewing direction v ∈ 𝑝 ∈ 𝑑 is converted
to spherical harmonics. The first 2 bands are used, i.e. 9 coefficients,
which are multiplied with the neural texel channels 4–12 of 𝑓𝑖 . (3)
Create background by eroding the uv-map from the training image
𝐼 . (4) Encode generator input and decode it to produce output image
(5). Note that the generator interprets the feature encoding used in
(2). (6) Feed output and target into discriminator. (7) Optimize.

Backpropagation. See (8–10) in Figure 2. (8) Update atlasA, keep
view-dependent (specular) texels on finer levels. Regress neural
feature channels 𝑓 [0 : 2] with the training image 𝐼 . The motivation
here is to get an estimate of the diffuse color of the surface. (9)
Update generator via loss between the generated output𝑂 and data
item image 𝐼 . (10) Update discriminator.

Our extensions. See orange annotations in Figure 2. The baseline
is extended in three ways: (i) A guided augmentation procedure𝐴(·)
is introduced that focuses on poorly inferred image regions when
fetching dataset items 𝑑 leading to more efficient training. SSIM is
used to determine these image regions. (ii) Additional viewpoint
information is added to the generator input, specifically optical
centres, positions and normals. (iii) Noise is added to viewing direc-
tions v and newly added guidance signal of the generator input𝐺𝑑 .

Note that the noise injected into the viewing directions v reduces
extrapolation artefacts significantly.

3 CONCLUSION
Individual viewpoints can be extrapolated smoothly, but there is
no guarantee for inter-frame coherency. Note that the resulting tem-
poral flickering could be reduced by: (i) providing a more accurate
proxy geometry, (ii) increasing the image density and (iii) stay-
ing closer to the input viewpoints. While the baseline method is
designed to interpolate the training corpus, as well as most other
popular neural scene representations (e.g. NeRF), extrapolation
causes uncertainty and thus noise. Our extensions technically trade
this noise with blur. It seems promising to incorporate more object
and scene information into the process and think of inpainting neu-
ral scene representations for view extrapolation tasks. It would be
great to generalise the current representation in a physically moti-
vated manner and surround the whole system with a differentiable
rendering system to learn the components needed for real-time
photo-real view synthesis. The current representation misses edit-
ing capabilities which hinders its practical applications.
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