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Abstract. Creation and delivery of “RealVR” experiences essentially consists

of the following four main steps: capture, processing, representation and ren-

dering. In this chapter, we present, compare and discuss two recent end-to-end

approaches, Parallax360 by Luo et al. [9] and MegaParallax by Bertel et al. [3].

Both propose complete pipelines for RealVR content generation and novel-view

synthesis with head-motion parallax for 360° environments.

Parallax360 uses a robotic arm for capturing thousands of input views on the

surface of a sphere. Based on precomputed disparity motion fields and pairwise

optical flow, novel viewpoints are synthesized on the fly using flow-based blend-

ing of the nearest two to three input views which provides compelling head-

motion parallax.

MegaParallax proposes a pipeline for RealVR content generation and render-

ing that emphasizes casual, hand-held capturing. The approach introduces view-

dependent flow-based blending to enable novel-view synthesis with head-motion

parallax within a viewing area determined by the field of view of the input cam-

eras and the capturing radius.

We describe both methods and discuss their similarities and differences in cor-

responding steps in the RealVR pipeline and show selected results. The chapter

ends by discussing advantages and disadvantages as well as outlining the most

important limitations and future work.

Keywords: 360° scene capture · scene representation · head-motion parallax ·

image-based rendering · novel-view synthesis

1 Introduction

A very important aspect to provide immersive VR experiences is head-motion parallax.

Motion parallax occurs whenever we move our head, e.g. when looking around, driving

a car or riding a train. When riding a train and looking out of the window, you notice

that closer objects will pass much faster than objects farther away, such as a mountain

in the distance. This effect is called motion parallax and is an essential monocular depth

cue for the human visual system.
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This chapter presents two recent methods that build upon an image-based scene

representation containing dense imagery and which are able to provide head-motion

parallax in real-world environments by employing a flow-based view synthesis.

On one hand, Parallax360 [9] supports full head-motion parallax and relies on a

non-casual capturing and time-consuming processing stage. On the other hand, Mega-

Parallax [3] provides restricted head-motion parallax and builds on a casual capturing

stage and an additional step for extrinsic calibration via Structure-from-Motion (SfM)

[17] and frame registration. Both methods use optical flow to establish dense (per-pixel)

correspondences between reference viewpoints or key frames. Lastly, both approaches

employ different flow-based blending procedures which allow to render novel view-

points in high-quality and in real-time.

Creating content for real-world VR applications is a very interesting research field.

One day, VR content will be as ordinary as an image or an video is today.

2 Related Work

Image-based rendering (IBR) or novel-view synthesis at its core can be formulated as

follows: Given a set of reference views of a scene, how can novel views be inferred from

them? Since it is not practical to sample the space of possible viewpoints (plenoptic

function [1]) very densely, e.g. using light fields [8], novel or missing viewpoints have

to be predicted or interpolated sufficiently fast at runtime to change virtual viewpoints

smoothly. IBR methods have been commonly categorized according to the type of ge-

ometry used by the representation to perform novel-view synthesis (see Section later in

this chapter).

The state of the art for capturing and displaying 360° real-world environments in

terms of visual quality and correctness is based on explicit scene reconstruction [7,6].

However, 3D reconstruction of arbitrary environments with a single moving camera is

extremely challenging. To give an example, dynamic objects like cars, people, animals,

plants etc. may move during the capture. Furthermore, shiny or specular scene objects,

such as cars, metals, polished surfaces, glass, water, etc. have a view-dependent appear-

ance which leads to incorrect feature matches and thus to erroneous 3D reconstructions.

The commercial standard for real-world VR content generation, transmission and

playback [2,16] is based on omnidirectional stereo [14,15], which is not relying on any

explicit geometry reconstruction, but image stitching techniques [21] tweaked with im-

plicit geometry, such as optical flow. The most promising work with respect to VR video

was recently published by Facebook [13] and is based on IBR with explicit geometry.

The subject of 3D reconstruction is not discussed in this chapter. The reader finds

excellent information about that in Peter Hedman’s chapter in this very book. The pre-

sented approaches explicitly avoid 3D reconstruction by relying on densely sampled

imagery. The set of all reference viewpoints and their corresponding pixels can be seen

as a large database of light rays, assuming an infinitely small aperture as its the case in

pinhole images. Only the most relevant work to understand and motivate Parallax360

and MegaParallax is addressed in the remainder of this section.
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2.1 The Plenoptic Function

The plenoptic function [1] describes the incident radiance at a 3D point (x, y, z) from a

certain direction (θ, φ), in 2D spherical coordinates, with wavelength λ at time t. Thus

overall, the function has 7 dimensions. The wavelength is usually discretized in a 3-

channel RGB texture, and it is assumed in this chapter that time is fixed. The plenoptic

function thus becomes a 5D function depending on space (3D) and direction (2D):

L(x, y, z, θ, φ).
Every pinhole image taken of the real-world represents a finite set of samples of the

plenoptic function assuming the optical center of the camera as (x, y, z) and the field

of view as a range over θ and φ. The fundamental goal of all image-based rendering

approaches is to reconstruct the plenoptic function L continuously given only finitely

many samples of it.

Plenoptic Modelling [10] is an IBR framework describing (1) sampling, (2) recon-

struction, and (3) resampling of the plenoptic function to create novel viewpoints from

a set of monoscopic cylindrical panoramas. Novel viewpoints show correct perspectives

and visibility without reconstructing any scene geometry explicitly, but only estimating

optical flow between the reference images. The downsides of the method are the non-

casual capture of cylindrical images and the required density of viewpoints to keep

optical flow estimation reliable.

Light Field Rendering [8] presents a 4D representation of the 5D plenoptic function

called a light field by parameterizing plenoptic samples using rays connecting two

planes that can be described by two 2D coordinates from the respective planes. Their in-

put images are sampled so densely that reconstructing a desired viewpoint is performed

by solely looking up and bilinearly (or quadrilinearly, if a focal plane is used addition-

ally to the camera plane) blending reference pixels. The main downside of the method

is the large memory footprint of light fields. Dozens of images captured with a gantry

are necessary to obtain a viewing space of a few centimeters, in which head-motion is

supported.

Rendering with Concentric Mosaics [19] present a 3D representation of the 5D plenop-

tic function which is limited to translation in a plane. Multiple concentric circles are

sampled using a slit-image approach as often used in the image stitching community

[14,21,15]. Every slit image is naturally described by radius, rotation angle and verti-

cal elevation. A desired viewpoint is synthesized by mosaicking reference slit images.

This work was the first to report the effect of vertical distortion, which occurs if a de-

sired viewpoint is stitched with slit images that were captured far away from the desired

optical center. The suggestion to use a constant-depth proxy to address vertical distor-

tion can be seen as constant composition surface in image stitching algorithms [21].

Vertical distortion and the non-casual, time-consuming capturing process are the main

downsides of this method.

2.2 Image-Based Rendering (IBR)

approaches all aim for reconstructing the plenoptic function continuously given a finite

set of reference viewpoints and estimated correspondences among these viewpoints.
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IBR methods can be categorized according to the type of geometry which is contained in

the representation and used in the view synthesis stage [18]. We will highlight relevant

aspects of IBR in this chapter which give important motivation and context for the

presented papers.

No Geometry Light field rendering [8] and concentric mosaics [19] do not rely on any

reconstructed geometry to synthesize novel viewpoints.

Implicit Geometry Pixel correspondences between a pair of images implicitly model

geometric relations among the depicted scene objects. Motion vectors of close objects

will have a larger magnitude than objects farther away due to motion parallax. Plenoptic

modelling [10] uses optical flow between reference views to establish dense pixel cor-

respondences needed for rendering. Megastereo [15] utilizes a casual capturing setup

and performs flow-based blending in order to mosaic omnidirectional stereo panoramas

[14] assuming a constant-depth composition surface.

The papers we focus on in this chapter are both IBR methods relying on implicit

geometry.

Explicit Geometry As soon as an IBR approach relies on geometry, e.g. in the form of

depth maps or a global scene proxy or mesh, it is called explicit. The main idea of these

methods is that desired viewpoints can be estimated by reprojecting reference views

into the desired view using the scene geometry.

Unstructured Lumigraph Rendering (ULR) [4] postulates desirable properties any

IBR system should have. If given a sufficient amount of images, it turns into lumigraph

rendering [5]. Otherwise, if given an unstructured set of input images with a high-

quality geometric proxy, it turns into view-dependent texture mapping.

Overbeck et al. present a end-to-end VR pipeline for full head-motion parallax [12].

The capture is non-casual and rendering involves explicit geometry in the form of depth

maps. The results are visually outstanding, but the representation is large.

It was shown that image edges must align well with explicitly reconstructed geome-

try in order to minimize visual artefacts along depth edges when performing novel-view

synthesis [7]. Hedman et al. further shows how to reconstruct a set of casually captured

fish-eye images into global scene proxies and statically texture them by proposing a

state-of-art plane-sweep algorithm and efficient cost-volume filtering [6].

2.3 Learning-Based Approaches

Deep neural networks define the state of the art for many computer vision tasks, e.g. op-

tical flow estimation, segmentation, classification, depth prediction from single images,

and many more. The essence of all learning-based approaches is data. Many of the most

successful networks are trained in a supervised manner, meaning that ground-truth la-

bels for the training data are required. For example, to train a supervised cat detector, a

network might see a set of images containing cats and images containing no cats. For

each incorrect prediction in an epoch (iterating once through the entire training dataset),

a loss is accumulated which informs the neural network about its mistakes, i.e. wrong
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predictions. Unsupervised learning approaches train on unlabeled data and try to infer

more general structures inherent in the observed data.

The most promising learning-based approaches used for IBR rely on physically

motivated models1 which can be trained to obtain powerful scene representations such

as multiplane images (MPIs) as introduced by Zhou et al.’s stereo magnification work

[22]. The authors train a network from data which is mined from YouTube videos and

fully automatic scene reconstructions using SfM, with the goal of extrapolating novel

viewpoints beyond the baseline of a stereo image captured with a dual camera of a

smartphone. The core idea of the MPI representation is that a scene volume can be

modeled by a set of fronto-parallel semi-transparent layers2 which can be rendered

from novel viewpoints.

The current state of the art of learned image-based representations suitable for head-

motion parallax is local light field fusion [11]. The method generates local light fields

by taking a set of casually captured images as input and predicting MPIs for each image

with its four closest neighbors. At runtime, neighboring light fields are fused to contin-

uously render novel viewpoints. The biggest limitations of the representation is its size

and its current restriction to indoor environments.

3 Methods

This section gives an overview of the presented methods, which both rely on a dense

sampling of key frames or reference viewpoints captured with a single moving camera.

In both works, novel views are synthesized by combining viewpoints using some sort of

flow-based blending without relying on any type of explicit geometry like depth maps

or meshes. Both methods assume that all input views share the same intrinsic calibration

and both register the central rays of captured viewpoints to radial directions of a camera

manifold, i.e. a circle or a sphere, which is technically done by parameterizing the

optical center and central ray using polar or spherical coordinates respectively.

3.1 Parallax360

The scene representation of Parallax360 consists of uniformly sampled key frames on

a sphere (see Figure 1 (a)), captured using a robot arm (hence no extrinsic calibration is

needed), disparity motion field for each key frame, calculated with the relative frames

around the key frames, as well as dense bidirectional optical flow between key frames.

A novel viewpoint is synthesized by determining the K nearest key frames (in practice

K = 2, 3), followed by a patch-wise flow-based warping operation concluded by an

alpha-blending step.

1 E.g. a model aiming to minimize the reprojection error of a set of images as commonly used

in bundle-adjustment.
2 This concept was first used by Walt Disney in the early stages of cartoon productions when

artists moved semi-transparent layers relatively to each other to create new scenes.
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Fig. 1: Parallax360 representation: (a) Sampling sphere with three key frames (in or-

ange), (b) key frames on longitude/latitude grid, (c) three main components: (1) key

frames, (2) curve-based disparity motion fields, and (3) optical flow between key

frames.

(a) (b) (c)

Fig. 2: Parallax360 capture: (a) key frames, (b) disparity motion fields to 6-node ring

neighborhood, (c) zoom in to (b).

Capture A robot arm captures thousands of plenoptic samples (pinhole images) and

support images in a 6-node ring neighborhood (relative frames), as shown in Figure 2,

along the radial directions of a spherical surface. Since the robot’s positioning is very ac-

curate, there is no need for external calibration, i.e. reconstruction of camera geometry,

after the capturing procedure. The capturing process for Parallax360 datasets is non-

casual and time-consuming, e.g. capturing a dataset (key frames and relative frames) is

done in almost 2 hours.

Processing The core of the Parallax360 processing is the computation of curve-based

disparity motion fields and pairwise optical flow used for novel-view synthesis. Each

disparity motion field f1, . . . , f6 is computed from a set of 7 frames: 1 key frame and its

6 relative frames (see Figure 2 (b,c)). Flow vectors fi(p) per pixel p are aggregated into

image patches P of size 8× 8 pixels by averaging them. The 6 initial disparity motion

fields of a key frame are converted into a curve-based motion representation, modeled

by a fitted ellipse and 6 polar angles (see Figure 3 (e)). For every patch P of a key
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frame, an ellipse EP
3 is computed by least-squares fitting. Five 2D points are needed

for describing an ellipse as a quadric surface, and six motion vectors to relative frames

are available. The endpoints of the motion vectors originating from the center of a patch

are used to fit the ellipse. The motion field generation takes up to 24 hours for a single

dataset on a quad-core computer.

Representation The fundamental component of Parallax360 datasets is the curve-

based motion representation (see Figure 3). The parameters of the fitted ellipse EP

and polar angles θi
P

are used to encode the magnitudes and directions of the motion

vectors respectively. Every patch P of each key frame is associated with a fitted ellipse

and 6 polar angles. The authors state that the estimation errors of the individual motion

vectors can be alleviated by fitting the ellipse to the endpoints of the motion vectors.

Key and relative frames are parameterized in spherical coordinates.

E

(d) (e)

Fig. 3: Parallax360 disparity motion fields (a,b) and curve-based motion fields (c,d,e):

(a) Relative frames, (b) corresponding motion fields, (c) disparity motion curves, (d)

key and relative frames ri, (e) motion vectors vi

P
for a patch P.

Rendering A target viewpoint rt in Parallax360 is assumed to be tangential4 to the

spherical imaging surface exactly like the key frames. The authors consider the two or

three closest key frames to synthesize a novel viewpoint (see Figure 4).

For each key frame, the direction of the target viewpoint rt can be described by the

two closest motion vectors expressed by the ellipse EP and the polar coordinates θP of

the nearest two relative frames, e.g. r1 and r2 in Figure 3 (d). rt can thus be written as

a convex combination of polar coordinates:

θ(rt) = αθ1
P
+ βθ2

P
(1)

3 The ellipse is denoted CP in the original paper, but this conflicts with the camera centers Ci

used in MegaParallax.
4 Image planes are tangential to the sphere meaning orthogonal to the surface normal.
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Fig. 4: Parallax 360 view synthesis: (a) Two closest key frames I1, I2 and optical flow

f1→2, (b) key frames warped It1, I
t
2 into the target viewpoint rt and blending motion

field f t1→2, (c) image of target viewpoint It.

α + β = 1 and θ(rt) denotes the polar angle of the 2D vector r. For a patch P in the

key frame, the motion vector is computed by using

vt

P
=

‖rt‖

‖r1‖
·EP(αθ

1
P
+ βθ2

P
) (2)

Here, EP(θ) is a motion vector from the center of the ellipse to the point on the ellipse

with polar angle θ. The parameters α and β are further used to synthesize intermediate

target images It
k
, k ∈ {1, 2, 3} by warping patches of the corresponding key frames:

Itk(p) = Ik
(

(f tk)
−1(p)

)

, (3)

where (f t
k
)−1 maps the pixels of the target frame It into the k-th key frame Ik. Note that

the representation is based on image patches P but the target frame It is synthesized

per pixel. The aggregated or patched motion vectors are smoothly propagated per pixel

by using bilinear interpolation.

To avoid computing the flow field online for blending the intermediate images, Pa-

rallax360 uses the following strategy:

1. Map pixels from the target view It into the key frame Ii by applying the inverse of

the disparity motion field f t
i
,
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2. apply the pairwise motion field fi→k to key frame Ik
3. use f t

k
to end up in the coordinates of the target image It

k
:

f ti→k = f tk ⊕ fi→k ⊕ (f ti )
−1, (4)

where ⊕ denotes the operator to concatenate mappings. With this strategy, we leverage

the pre-computed optical flow f1→2 to achieve real-time rendering of It.

Note that it is useful to think about the rendering as a backward warping process,

in which the target image plane is the novel viewpoint rt and the source plane is one

of the nearest key frames Ik. Since the novel viewpoint can be expressed in each patch

of each key frame by using the fitted ellipse Ek and a polar angle, intermediate images

can be created according to Equation 3. In order to blend smoothly, optical flow is

approximated for the intermediate images It
k

as shown in Equation 4 and used for flow-

based blending. The authors report ghosting artifacts (see Figure 7 right) when not

using the flow field f t1→2. The issue becomes more severe for challenging viewpoints

that contain scene objects close to the camera because of their different perspectives in

the key frames.

3.2 MegaParallax

The scene representation of MegaParallax consists of casually captured key frames on

a circle (see Figure 5, Capture), e.g. hand-held using a consumer camera or mobile

device, extrinsic calibration obtained by SfM and bidirectional optical flow between the

key frames.

A novel viewpoint is synthesized by reconstructing individual camera rays of a de-

sired viewpoint. First, for each ray, the enclosing pair of key frames is determined.

Second, the ray reconstruction itself uses a flow-based blending of a pair of pixels,

stemming from the camera pair (one pixel per camera), which correspond according to

a simple proxy geometry, e.g. a plane parallel to the desired camera’s image plane, but

much farther away (see Figure 8).

Capture MegaParallax datasets share exactly the same input requirement as suggested

in Megastereo [15]. Hand-held cameras can be used to acquire datasets for 360° stereo

panoramas. The suitability of the captured video to get successfully processed into a

Megastereo or MegaParallax dataset is fundamentally determined by the quality of the

extrinsic calibration. The capturing procedure itself takes only about 10 seconds.

There is active research that focuses on making the reconstruction of the desired

egocentric camera paths more robust [20]. The dominance of rotation compared to

translation makes egocentric camera paths very hard to reconstruct.

Processing As shown in Figure 5, the processing involves the following five steps:

1. Estimate camera extrinsics using SfM, e.g. COLMAP [17],

2. fit a circle to the optical centers,
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Fig. 5: MegaParallax pipeline: Capture: Video recorded along circular trajectory. Pre-

processing: Estimate extrinsics, fit ideal trajectory, allows simple key frame registration

via polar coordinates, undistort key frames, bidirectional flow for each pair of neigh-

boring cameras. Rendering: Viewing rays are reconstructed using view-dependent flow-

based blending.

3. register viewpoints (a.k.a. input, reference or key frames) to the circle identifying

the optical axis of each viewpoint with a polar angle φ,

4. undistort images to obtain pinhole images, and lastly

5. compute bidirectional optical flow for each reference frame towards its left and

right neighbors.

The bottleneck of this stage is the estimation of the camera extrinsics (1) since the

specific egocentric, inside-out camera path makes the reconstruction very challenging.

Bertel et al. perform the extrinsic reconstruction in two passes. The first pass is per-

formed on a subset of frames to increase the baselines between neighboring pairs of

cameras. The second pass registers the remaining frames to the reconstruction from the

first step. The viewpoints are picked by uniformly sampling polar angles induced by

the circle. Estimating the extrinsics, i.e. performing a sparse SfM reconstruction, for a
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Fig. 6: MegaParallax view synthesis: The camera ray xD is reconstructed by projecting

a world point X into the surrounding pair of cameras CL and CR.

dataset takes between 30 and 60 minutes. The used two-pass strategy5 allows for quick

reconstructions. A few iterations of bundle adjustment can be applied to refine the final

reconstruction. Finally, computing optical flow (5) is reliable as long imaged scenes are

mostly diffuse and static, and source and target images are sufficiently close, i.e. having

a small baseline and share similar orientations.

Representation The representation of a MegaParallax dataset is very simple. The fol-

lowing data must be provided for each viewpoint at runtime: (1) the corresponding ref-

erence frame Ik and flow fields to left and right neighbor frames (Fk→k−1 and Fk→k+1

respectively), and (2) the projection matrix. The fitted circle and a linear array indexed

by the polar coordinates of the viewpoints are needed to enable fast lookup operations

at runtime.

A static cylindrical or dynamic planar scene geometry is taken as proxy geome-

try for the rasterization pipeline of OpenGL. The cylinder mimics previous panorama

stitching algorithms [14,15,21] whereas a fronto-parallel plane in front of a desired

viewpoint has been used in light field rendering [8].

Rendering The rendering procedure used in MegaParallax is depicted in Figure 6. A

pixel xD in the desired view is a convex combination of pixels xL (left viewpoint) and

xR (right viewpoint):

ID(xD) = (1− α) · IL(xL) + α · IR(xR), (5)

5 Originally proposed in Marc Pollefeys’ PhD thesis.
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Fig. 7: MegaParallax view-dependent blending weight and ghosting: Left: View-

dependent blending weight determined by desired camera ray and enclosing camera

pair. Right: Flow-based blending is used to avoid ghosting artefacts.

The blending weight α depends on the relative angle αLD between the vectors r∗
L

and

r∗
R

connecting the optical centers of the left CL and right CR viewpoints with the

optical center of the desired viewpoint and the desired camera ray (see Figure 7, left).

Note that the blending weights – and hence overall color – are computed independently

per pixel of the desired viewpoint, which allows for extrapolation of novel viewpoints.

The use of an inaccurate proxy geometry may produce large reprojection errors,

which reveal themselves as blurry artefacts or texture misalignments, such as ghosting

(see Figure 7, right). Megastereo [15] proposes flow-based ray interpolation to over-

come these artefacts.

MegaParallax proposes view-dependent flow-based blending, which is not solely

restricted to a fixed viewing circle as applied in Megastereo’s casual ODS approach. To

alleviate ghosting artefacts, MegaParallax uses flow-corrected pixel coordinates x∗

L
and

x∗

R
to sample source pixels from the left IL and right IR reference images, respectively,

to synthesize a pixel xD in the desired image ID:

ID(xD) = (1− α) · IL(x
∗

L) + α · IR(x
∗

R). (6)

The flow-corrected pixel coordinates are obtained as follows:

1. A plane-induced displacement between the projections xL and xR is performed:

vLR = xR − xL and vRL = xL − xR. (7)

2. The motion-corrected flow vectors are obtained using:

F∗

LR(xL) = vLR − FLR(xL) and (8)

F∗

RL(xR) = vRL − FRL(xR). (9)

3. Scaling these displacements yields the flow-corrected image coordinates:

x∗

L = xL + α · F∗

LR(xL) and (10)

x∗

R = xR + (1− α) · F∗

RL(xR). (11)
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Fig. 8: MegaParallax’s view-dependent flow-based blending enables motion parallax

without ghosting artefacts. More description in the text.

Note that view-dependent flow-based blending resolves ghosting in the desired view-

points, but does not necessarily produce correct perspectives in all cases due to vertical

distortion. The scaled displacements α · F∗

LR
and (1 − α) · F∗

RL
only push the initial

projections xL and xR in the correct directions, as illustrated in Figure 8. The method

works well if the angular baseline6 between images is sufficiently small with respect to

the closest scene object, and optical flow is sufficiently smooth.

The rendering speed is very fast (> 200 fps) since all flow-fields are precomputed

and thus only light-weight computations, mostly texture lookups, need to be performed

at runtime. The rendering strategy delivers high-quality results and supports desired

views with wide field of views by design. The per-pixel blending allows for view ex-

trapolation, which occurs whenever a viewpoint is synthesized within the camera circle.

This can be seen at best in the supplemental video of MegaParallax7 when translational

camera motion is compared against Parallax360.

4 Results

This section shows some selected results shown in the presented papers. Luo et al.

show comparisons between omnidirectional stereo (ODS) panoramas [14,15] and Par-

6 Angle between neighboring viewpoints, e.g. 180 viewpoints sampled uniformly on a circle

yields an angular baseline of 2°.
7 https://richardt.name/megaparallax.mp4
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Fig. 9: Parallax360 results: A comparison between stereo panoramas and Parallax360

results. More description in the text.

allax360 in Figure 9. The first row depicts two viewpoints (left and right view) with

different head orientations obtained from a stereo panorama. The second row shows

close-ups of the rectangles depicted in the first row. Note that there is no relative mo-

tion between scene objects. The third row shows two stereo viewpoints obtained by

Parallax360. The fourth row shows close-ups in spirit of the second row. ODS panora-

mas provide binocular disparity for head rotation but do not support head translation

and thus neither support motion parallax by design. Note the relative displacements of

the trees observed in the fourth row of Figure 9, caused by motion parallax.

Bertel et al. show comparisons between Unstructured Lumigraph Rendering (ULR)

[4], Megastereo [15] and MegaParallax in Figure 10. First row: ULR provides motion
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Fig. 10: MegaParallax results: Comparison between ULR (motion parallax but blurry),

Megastereo (no motion parallax but crisp) and MegaParallax (motion parallax and

crisp). More description in the text.

parallax, but leads to blurry rendering artefacts (ghosting) which is expected when us-

ing an inaccurate scene proxy. Second row: Megastereo shows no motion parallax, but

the viewpoints show visually crisp results (no ghosting). Third row: MegaParallax com-

bines the best of both approaches, namely motion parallax without introducing ghosting

artefacts.

5 Discussion

We now discuss the most important aspects of the two methods described in this chapter

and focus on the need of compelling visual content that is suitable for RealVR experi-

ences, i.e. content that provides head-motion parallax at runtime.
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5.1 Capturing

Parallax360 uses a robot arm to capture thousands of input images. The capturing pro-

cedure takes less than two hours. MegaParallax, on the other hand, needs only hun-

dreds of input images and the capturing takes about 10 seconds. The input images are

extracted from a continuous sweep of a hand-held camera (see Figure 5 Capture). How-

ever, note that Parallax360 densely captures a spherical imaging surface (see Figure 2),

while MegaParallax just captures one single circle.

The fundamental trade-off here is that casual captures take much less time than

fully controlled captures. However, this comes at the cost of a more difficult estimation

of the camera path, e.g. by determining extrinsic calibration of video frames using SfM

or SLAM.

Finding capturing procedures and flexible models to represent RealVR experiences

is very exciting research since it combines many areas from computer vision and com-

puter graphics.

5.2 Processing

Parallax360 does not rely on estimating camera extrinsics because of the fully con-

trolled capture procedure using a robot arm. The core of its representation are curve-

based disparity motion fields (see Figure 3), which are computed by processing dispar-

ity information obtained by optical flow between key frames and associated neighboring

relative frames.

MegaParallax relies on the estimation of camera extrinsics. The ability to create

datasets of sufficient quality converges with the problem to reconstruct scenes from a

egocentric inside-out video. Once a camera path reconstruction of sufficient quality is

obtained, it is straightforward to fit a circle to the estimated viewpoint centers, register

viewpoints via polar angles induced by the circle, and to compute bidirectional optical

flow between neighboring viewpoints (see Figure 5 Preprocessing).

Note that both methods demonstrate that optical flow works reliably if source and

target images are sufficiently close to each other. An important remark is that the degree

of closeness depends on the depth distribution of the scene. The closer scene objects

come to a viewpoint, the bigger their disparity (motion parallax), when projecting them

into a pair of neighboring frames or viewpoints.

While computing the curved motion fields can take up to 24 hours on a quad-core

PC, and thus dominates the Parallax360 preprocessing time, SfM and optical flow com-

putation takes less than 2 hours in MegaParallax.

5.3 Representation

Parallax360 computes the 5 parameters of an ellipse and 6 polar angles for every patch

of every key frame to encode curve-based motion fields (see Figure 3). Key frames as

well as novel viewpoints are defined on the spherical imaging surface that was sam-

pled during capturing (see Figures 1 and 2). The viewing direction of a key or target

frame is fully determined by the spherical coordinates modeling its central ray, i.e. a ray
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Fig. 11: MegaParallax viewing space analysis: Left: Blending performance according

to central ray of the desired viewpoint, e.g. C0 placed at the center of the circle. Right:

Translating the desired viewpoint (C1, C2) causes slanted angles with the circle, e.g. δ1
and δ2. If δi exceeds the field of view of the reference viewpoint, the ray reconstruction

fails.

originating at the sphere’s center and thus intersecting the spherical surface in normal

direction (a.k.a. radial direction).

MegaParallax needs to estimate camera extrinsics per frame or viewpoint. Every

viewpoint is registered with a circle fitted to the optical centers of cameras. For each pair

of neighboring cameras, bidirectional flow is computed (see Figure 5, Preprocessing).

In summary, for each key frame (viewpoint), a projection matrix is stored, as well as a

polar angle and dense optical flow to its left and right neighbor.

The advantage of dense image representations is that no explicit scene geometry

needs to be known to synthesize novel viewpoints. Nevertheless, this statement is not

complete, since the quality of novel viewpoints depends heavily on the quality of cor-

respondences between the images. This, in turn, varies with the nature of the scene to

be captured. Note that visbility does not need to be modeled in dense image-based rep-

resentations, view synthesis comes down to lookups and blendings and does not rely on

reprojection over scene geometry.

5.4 Rendering

Synthesizing a novel viewpoint in Parallax360 (see Figure 4) is based on representing

the target viewpoint with respect to its two or three closest key frames. The disparity

motion fields of the key frames are then used to create intermediate target viewpoints

by warping key frames towards the target viewpoint (see Figure 4 (b) and Equation 3).

The target viewpoint is created by flow-based blending of the intermediate viewpoints,

whose flow can be obtained from the disparity motion fields and the dense flow fields
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between key frames (see Equation 4). Note that while the synthesis runs per pixel, the

representation is based on image patches. Furthermore, novel viewpoints are always

interpolations of existing pairs of key frames on a per-patch level.

View synthesis in MegaParallax (see Figures 6 and 8) is achieved by reconstructing

individual camera rays, which leads to panoramic field of views and extrapolation of

the captured viewpoints instead of only interpolation.

The most important aspect of flow-based blending is that close scene objects will

project farther away from the centers of the source images, which introduces errors.

This is very similar to the case of panorama stitching algorithms which mosaic vertical

image strips into a single equirectangular image in 2D [14,21,15]. Nearby scene objects

in the real world get vertically distorted [19] when packed into equirectangular images.

They get literally squeezed horizontally which is desired in 360° panorama stitching

algorithms, but unwanted in image-based rendering applications, in which correct per-

spectives in desired viewpoints are essential to immerse consumers into “RealVR” ex-

periences.

5.5 Viewing space

The Parallax360 approach synthesizes novel viewpoints on the spherical imaging sur-

face, which is sampled during the capture process. Novel viewpoints are synthesized us-

ing flow-based image interpolation. To enable head-motion parallax within the sphere,

the initial target viewpoints need to be extended.

A viewpoint extension uses a homography and a scaling operation to adjust a syn-

thesized viewpoint to approximate a desired viewpoint. The homography applies scal-

ing to account for the expected change in parallax when moving forward or backward.

Since this operation does not provide plausible motion parallax, we think that Paral-

lax360 provides real head-motion parallax only on the surface of the sphere and not

within. Nevertheless, the method supports arbitrary head-motions, but provides only

restricted motion parallax when viewpoints need to be extended. The method employs

a diameter of 1.25 m for the spherical imaging surface and shows compelling results

for head-motion parallax in 360° environments. Nevertheless, the actual viewing space

within the capturing sphere is not further evaluated.

MegaParallax operates within a circle, in comparison to Parallax360 which operates

on the surface of a sphere. The translational freedom is restricted by (see Figure 11):

1. The radius of the circle,

2. the density of reference viewpoints and

3. their field of view shared with neighboring views.

The field of view of the desired viewpoint has an impact as well, but this parameter is

kept fixed for each dataset. The actual viewing area is described by a concentric circle

which supports high-quality view synthesis within a radius of roughly factor 2 of the

capturing circle’s radius depending on the quality of the extrinsic calibration (for more

details, please refer to Bertel et al. [3], Section 8, Figure 14). As an example, hand-held

datasets have a circle radius of roughly 0.8m which leads to a viewing area radius of

0.4m.
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Fig. 12: Top row, Parallax360 limitation: Sequence of viewpoints with incorrect motion

fields produce interpolation artefacts. Bottom row, MegaParallax limitation: The desired

viewpoint is translated from the center of the circle to the left, outside the supported

viewing space.

5.6 Limitations

The main limitations of Parallax360 are:

1. A time consuming capture and preprocessing stage and

2. view synthesis technically only on the surface of the imaging surface leading to

view interpolation and incorrect motion parallax when moving inside the sphere.

Note that the quality of the view interpolation depends on the quality of the precom-

puted optical flow fields. The main limitations of MegaParallax are:

1. Only head-motion parallax inside the capture circle,

2. vertical distortion caused by using an inaccurate scene proxy and

3. fragile extrinsic estimation, which makes datasets from complex environments,

such as specular or dynamic scenes or scenes with large depth variation, very chal-

lenging to reconstruct.

View synthesis fails in both approaches if a desired ray cannot be reconstructed from

a determined pair of cameras (or triplet of key frames) due to insufficient field of view

as discussed in Section 5.5. This results visually in black stripes as seen in the bottom

row in Figure 12. From left to right: (1) The desired viewpoint placed at the center of

the circle. (2) Viewpoint translates to the left. Camera rays on the right start retrieving

black pixels because of slanted angles δ. (3) Translating further to the left causes more

ray reconstructions to fail.
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Another limitation shared by Parallax360 and MegaParallax is the dependency on

sufficiently good flow fields. Optical flow can become unreliable in certain situations,

e.g. when estimating correspondences in regions with repetitive textures (see Figure 12,

top row).

It is worth noting that Parallax360 does not struggle with specular scenes because of

the fully controlled capturing which is very similar in spirit to light field rendering [8].

Parallax360 does not suffer from vertical distortion since target viewpoints are created

by blending warped key frames. The warping happens on the spherical surface and on a

per patch-level within each key frame. Since similar perspective images are warped and

blended, resulting viewpoints exhibit plausible perspectives. Note that this only works

if the key frames are captured sufficiently dense with respect to the closest object8 in

the scene.

This is not the case for MegaParallax, which performs independent, per-ray recon-

structions which can lead to cases in which a single viewpoint is synthesized by dozens

of pairs of reference viewpoints which all show different perspectives, but cover a larger

field of view. Since there is no accurate scene proxy to reproject reference viewpoints in

3D euclidean space, vertical distortion becomes visible in desired viewpoints (see how

the hand-rail bends in Figure 8 of [3]).

6 Conclusion

Both Parallax360 and MegaParallax propose image-based scene representations and use

implicit geometry, i.e. optical flow, to render novel viewpoints using a variant of flow-

based blending. The absence of explicit geometry is compensated by a large number

and high density of reference views, which are necessary to (1) compute flow fields reli-

ably and (2) perform view interpolation while maintaining plausible perspectives. Both

methods share time-consuming preprocessing stages, which enable real-time rendering

algorithms based primarily on texture lookups and only light-weight computations at

runtime.

The main advantage of the presented methods is the high visual quality of their

results, particularly for the outdoor environments shown in this chapter (see Figures 9

and 10), which are known to be very difficult to reconstruct explicitly. Especially fine

geometry like plants or trees are very challenging, but supported well in the results.

The main issues with MegaParallax are (1) vertical distortion that is caused by a

constant scene depth assumption (as in concentric mosaics [19]) and (2) a viewing

space restricted to a circle. The viewing space could be extended easily by using ref-

erence viewpoints with a wider field of view or providing explicit scene geometry to

allow small off-plane movements and rotations. For Parallax360, the time-consuming

capturing and processing stages as well as its viewpoint extension to render viewpoints

within the sphere are its main issues.

While image-based rendering methods relying on explicit geometry produce the

visually most compelling results for many environments, they rely on a successful esti-

mation of scene geometry, which is hard to guarantee in arbitrary situations (see Figure

8 Assuming a uniform distribution of reference viewpoints.
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9 in [3]). The quality of the results mainly depends on the quality of the estimated

geometry.

The interplay of capturing, processing, representation and rendering is vital to un-

derstand design decisions in “RealVR” pipelines. Since representations have to adopt

to the nature of scene objects which shall be modeled, e.g. diffuse architecture vs. shiny

cars, or hairy cats vs. thin twigs and leaves, more flexible representations have to be

found to faithfully capture and represent the real world in all its beauty and visual fi-

delity.

To represent a real-world scene in all its complexity using only a sparse number

of viewpoints, it seems natural to us that hybrid representations have to evolve, which

combine the advantages of implicit and explicit geometry as well as learning-based

approaches, such as multiplane images. The representations of the presented methods

could be compressed by modeling static and diffuse parts of the scene with static ge-

ometry, since it is not necessary to store dozens of largely redundant images of a scene,

which does not contain view-dependent effects.

We currently see the biggest demand in more robust and reliable methods for 2D and

3D scene understanding and scene reconstruction in particular. This will automatically

provide better correspondences and thus more robust and more compact scene repre-

sentations, which can be tweaked to perform excellently for special types of scenes.

Finding a scene representation that is sufficiently flexible to model the real world has

been a difficult challenge in computer graphics research for decades. Requiring that

this representation should be extractable from a sparse set of viewpoints, ideally casu-

ally captured, makes novel-view synthesis for “RealVR” a very challenging and multi-

disciplinary research topic.
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