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1. Metrics and evaluation procedure

Like MiDaS, our disparity estimates are ambiguous up to
scale and offset. We therefore determine the optimal scale
and offset to match the ground-truth disparity map (inverse
depth) using least squares [3, Equation 14]. As all baselines
predict depth and not disparity, we rescale them similarly but
in depth space. In the following metrics, z and z∗ represent
the predicted and ground-truth depth, respectively:

• Absolute relative error (AbsRel): 1
N

∑N
i=1

|zi−z∗
i |

z∗
i

• Mean absolute error (MAE): 1
N
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i=1 |zi − z∗i |

• RMSE:
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• Accuracy δ<τ : % of z s.t. δ = max
(
zi
z∗
i
,
z∗
i

zi

)
< τ

2. Runtime measurements

We measured the runtime of our method on a 2.1–3.2 GHz 16-
core Xeon Silver 4216 processor with an NVIDIA RTX 3090
GPU. Table 1 list the runtime for preprocessing, including
factorisation of the Poisson blending problem matrix, and
the time required for each of the four stages of our method.

Table 1. Runtime measurements of our framework for different
stages nd input resolutions (‘Res.’), in seconds. For Poisson blend-
ing, we factorise the linear system in a preprocessing step once.

once per image

Blending Res. Preproc. Projection MiDaS Alignment Blending

Frustum M2 2K — 1.0 11.2 37.0 3.7
Frustum M3 2K — 1.0 24.3 39.6 3.0
Poisson M2 2K 43.5 1.0 10.3 37.8 17.4
Poisson M3 2K 46.7 1.0 25.4 41.5 17.9

Frustum M2 4K — 1.1 11.3 37.8 13.1
Frustum M3 4K — 1.1 24.5 37.1 18.8

M2 Using MiDaS v2 [3] M3 Using MiDaS v3 [2]

3. Extended discussion

Our method can fail if the tangent disparity estimates are
incorrect, e.g. for large plain walls, saturated skies, or large
photorealistic wallpapers, as shown in Figure 1 (left). As
monocular depth estimates improve over time, our method
can take advantage of them immediately. In some cases,
the least-squares rescaling to fit the ground-truth disparity
map pushes disparity values out of bounds, towards negative
disparities. These negative disparities correspond to negative
depth values that are incorrect (see Figure 1, right).

We also found inconsistencies in the reconstructed
meshes of Matterport3D [1], such as windows and mirrors
with depths labelled at their surface instead of corresponding

Photorealistic textures (crop) Error in least-squares rescaling
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Figure 1. Failure cases for our method. Left: Our method cannot
overcome incorrect tangent disparity estimates such as this photo-
realistic textured wall, which is treated as if it was an island view
and not a wall. Right: In some cases, the least-squares rescaling to
fit the ground-truth disparity range results in negative disparities,
which produces incorrect, negative depth values (dark purple).

1



Mirror surface (GT) versus visible reflection (ours) Window surface (GT) versus outside scene (ours) Crop: Missing chandelier
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Figure 2. Inconsistent ground-truth depth maps in Matterport3D [1]. Left: The mesh geometry covers the surface of the mirrors instead of
representing the reflection of the visible scene. Centre: The large windows in the room are treated as if they were opaque, instead of showing
the depth of the environment outside or being masked out. Right: The chandelier is missing in the mesh but reconstructed by our method.

to the visible scene outside or being reflected, or missing
lamps or chandeliers that are clearly visible in the image.
We show examples in Figure 2, in which our method re-
constructs arguably more plausible depth than the ground
truth.
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