
BlockGAN: Learning 3D Object-aware Scene
Representations from Unlabelled Images

— Supplemental Document —

Thu Nguyen-Phuoc
University of Bath

Christian Richardt
University of Bath

Long Mai
Adobe Research

Yong-Liang Yang
University of Bath

Niloy Mitra
Adobe Research & UCL

In this document, we show additional results (Section 1), ablation studies (Section 2) and comparisons
(Section 3). We also provide additional information about our losses (Section 4), datasets (Section 5)
and implementation, including our training procedure and network architectures (Section 6).

1 Additional results

HoloGAN

D
ep

th
 tr

an
sl

at
io

n

H
or

iz
on

ta
l t

ra
ns

la
tio

n

Ro
ta

tio
n

Ch
an

gi
ng

 id
en

tit
y

(z
)

a

b

a

b

a

b

a

b

c c

c c

Figure 1: Samples from HoloGAN [6] trained on the datasets (a) SYNTH-CHAIR1, (b) SYNTH-CAR2
and (c) CLEVR2. HoloGAN tends to associate each pose θ with a fixed object’s identity, i.e., moving
objects erroneously changes identity of both foreground and background (see top left, bottom left and
right), while changing the noise vector z only changes a small part of the background (top right).

1.1 Comparison to entangled 3D scene representation
We compare BlockGAN with HoloGAN [6], which also learns deep 3D scene features but does
not consider object disentanglement. In particular, HoloGAN only considers one noise vector z
for identity and one pose θ for the entire scene, and does not consider translation t as part of θ.
While HoloGAN works well with object-centred scenes, it struggles with moving foreground objects.
Figure 1 shows that HoloGAN tends to associate each pose θ with a fixed object’s identity (i.e.,
moving objects erroneously changes identity of both foreground and background), while changing z

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

only changes a small part of the background. BlockGAN, on the other hand, can separate identity and
pose for each object, while being able to learn scene-level effects such as lighting and shadows.

1.2 Increasing the number of foreground objects
To test the capability of our method, we train BlockGAN on CLEVR6 (6 foreground objects). As
shown in Figure 2, BlockGAN is still capable of generating and manipulating 3D object features,
although the background generator now also produces foreground objects (Figure 2f). Moreover,
rotating individual object leads to changes in object’s depth (Figure 2a).

Interestingly, we notice that BlockGAN now generates images with more or less than 6 objects,
despite being trained with images that contain exactly 6 objects (Figure 2g). We hypothesise that

a

b

c

d

e

f

g

Figure 2: Qualitative results of BlockGAN trained on CLEVR6. (a) Rotating a foreground object,
(b) Horizontal translation, (c) Depth translation, (d) Changing foreground object 1, (e) Changing
foreground object 3, (f) Changing the background object, and (g) Random samples.

2

BlockGAN’s failure in this case is due to our assumption that the poses of all objects are independent
from each other (during training, we randomly sample the pose θ for each object). This is not true
in the physical world (also in the CLEVR dataset) where objects do not intersect. The more objects
there are in the scene, the stronger the interdependence between objects’ poses becomes. Therefore,
for future work, we hope to adopt more powerful relation learning structures to learn objects’ pose
directly from training images. Another interesting direction is to design object-aware discriminators,
which are capable of recognising fake images when the generators produce samples with more objects
than the training images.

2 Additional ablation studies
2.1 Learning without the perspective camera
Here we show the advantage of implementing the perspective camera explicitly, compared to using a
weak-perspective projection like HoloGAN [6]. Since a perspective camera directly affects foreshort-
ening, it provides strong cues for BlockGAN to solve the scale/depth ambiguity. This is especially
important for BlockGAN to learn to project and reason over occlusion by concatenating the depth
and channel dimension, followed by an MLP. Since the MLP is flexible, BlockGAN trained without a
perspective camera, therefore, tends to learn to associate an object’s identity with scale and depth,
while changing depth only changes the object’s appearance (see Figure 3).

Depth translation

Changing foreground object 1 (z1)

a

b

a

b

Figure 3: The effect of modelling the perspective camera explicitly (b) compared to using a weak-
perspective camera (a). Note that with the weak-perspective camera (a), translation along the depth
dimension (top) leads to identity changes without any translation in depth, while changing the noise
vector z1 (bottom) changes both depth translation and, to a lesser extent, the object identity. Using a
perspective camera correctly disentangles position and identity (b).

2.2 Scene composer function
We consider and compare three scene composer functions: (i) element-wise summation, (ii) element-
wise maximum, and (iii) an MLP (multi-layer perceptron). We train BlockGAN with each function
and compare their performance in terms of visual quality (KID score) in Table 1. While all three
functions can successfully combine objects into a scene, the element-wise maximum performs
best and easily generalises to multiple objects. Therefore, we use the element-wise maximum for
BlockGAN.

2.3 Learning without the style discriminator
When BlockGAN is trained with a standard discriminator on datasets with a cluttered background,
such as the REAL-CAR dataset, the foreground object features tend to include part of the background
object. This creates visual artefacts when objects move in the scene (indicated by red arrows in
Figure 4a). We hypothesise that these artefacts should be picked up by the discriminator since

3

Table 1: KID estimates for different scene composer functions.

Method SYNTH-CAR1 (64×64) SYNTH-CHAIR1 (64×64)

Sum 0.040 ± 0.002 0.038 ± 0.001
MLP 0.044 ± 0.001 0.033 ± 0.001
Max 0.039 ± 0.002 0.031 ± 0.001

generated images should look unrealistic. Therefore, we add more powerful style discriminators
[6] to the original discriminator at different layers (see Section 4 for details). Figure 4b shows that
the generator is indeed discouraged from adding background information to the foreground object
features, leading to cleaner results.

a)

b)

Figure 4: With a standard discriminator (a), a part of the background appearance is baked into the
foreground object (see red arrows). Adding the style discriminator (b) cleanly separates the car from
the background.

2.4 Incorrect number of objects
We next investigate the performance of BlockGAN when the training data contains fewer or more
objects than expected. In Figure 5, we show BlockGAN configured with 2 foreground object genera-
tors when trained with images containing 1 or 3 foreground objects. If only a single object is present
(Figure 5, left), changing either of the two foreground generators changes the object’s appearance
and pose (top), while changing the background works as expected (bottom). If there are three objects
present (Figure 5, right), changing one foreground generator changes one object as expected (top),
while changing the background generator simultaneously changes one foreground object and the
background (bottom).

Change foreground

Change background

Change foreground

Change background

Change foreground

Change background

Change foreground

Change background

Figure 5: Results for BlockGAN trained with 2 foreground (FG) object generators when trained on 1
or 3 foreground objects. 1 object (left): Changing either FG object changes the object’s appearance
and pose; changing the background works as expected. 3 objects (right): Changing one FG object
changes one object as expected; changing the background changes one FG object and the background.

3 Comparison to other methods
In Figure 6, 7, 8 and 9, we show generated samples by a vanilla GAN (WGAN-GP [3]), 2D object-
aware LR-GAN [7], 3D-aware HoloGAN [6] and our BlockGAN. Compared to other models,
BlockGAN produces samples with competitive or better quality, and offers explicit control over
the poses of objects in the generated images. Notice that although LR-GAN is designed to handle

4

WGAN-GP LR-GAN

HoloGAN BlockGAN (ours)

Figure 6: Samples from WGAN-GP, LR-GAN, HoloGAN and our BlockGAN trained on SYNTH-
CAR1.

foreground and background objects explicitly, for CLEVR2 with two foreground objects, this method
struggles and tends to always place one foreground object at the image centre (see Figure 8).

Implementation details For WGAN-GP, we use a publicly available implementation1. For LR-
GAN and HoloGAN, we use the code provided by the authors. We conduct hyperparameter search
for these models, and report best results for each method. Note that for HoloGAN, we modify the 3D
transformation to add translation during training, since this method assumes that foreground objects
are at the image centre.

1https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow

5

https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow

WGAN-GP LR-GAN

HoloGAN BlockGAN (ours)

Figure 7: Samples from WGAN-GP, LR-GAN, HoloGAN and our BlockGAN trained on SYNTH-
CHAIR1.

6

WGAN-GP LR-GAN

HoloGAN BlockGAN (ours)

Figure 8: Samples from WGAN-GP, LR-GAN, HoloGAN and our BlockGAN trained on CLEVR2.

7

WGAN-GP LR-GAN

HoloGAN BlockGAN (ours)

Figure 9: Samples from WGAN-GP, LR-GAN, HoloGAN and our BlockGAN trained on REAL-
CARS.

8

4 Loss function and style discriminator
For datasets with cluttered backgrounds like the natural REAL-CAR dataset, we adopt style discrimi-
nators in addition to the normal image discriminator (see the benefit in Figure 4). Style discriminators
perform the same real/fake classification task as the standard image discriminator, but at the feature
level across different layers. In particular, style discriminators classify the mean µ and standard
deviation σ of the features Φl at different levels l (which are believed to describe the image “style”).
The mean µ(Φl(x)) and variance σ(Φl(x)) of the features Φl(x) are computed across batch and
spatial dimensions independently using:

µ(Φl(x)) =
1

N ×H ×W

N∑
n=1

H∑
h=1

W∑
w=1

Φl(x)nhw, (1)

σ(Φl(x)) =

√√√√ 1

N ×H ×W

N∑
n=1

H∑
h=1

W∑
w=1

(
Φl(x)nhw − µ(Φl(x))

)2
+ ε. (2)

The style discriminators are implemented as MLPs with sigmoid activation functions for binary
classification. A style discriminator at layer l is written as

Llstyle(G) = Ez,θ[− log Dl(G(z, θ))]. (3)

The total loss therefore can be written as

Ltotal(G) = LGAN(G) + λs ·
∑
l

Llstyle(G). (4)

We set λs = 1 for all natural datasets and λs = 0 for synthetic datasets.

5 Datasets
We modify the CLEVR dataset [4] to add a larger variety of colours and primitive shapes. Additionally,
we use the scene setups provided by CLEVR to render the remaining synthetic datasets (SYNTH-
CARn and SYNTH-CHAIRn, with n foreground objects each). These include a fixed, grey background,
a virtual camera with fixed parameters but random location jittering, and random lighting. We also
use the render script from CLEVR to randomly place foreground objects into the scene and render
them. We render all image at resolution 128 × 128, and bi-linearly downsample them to 64 × 64
for training. For the natural CAR dataset, each image is first scaled such that the smaller side is 64,
then it is cropped to produce a 64×64 pixel crop. During training, we randomly move the 64×64
cropping window before cropping the image. Figure 10 includes samples from our generated datasets,
and Table 2 lists the range of pose parameters used for each dataset during training.

Link for 3D textured chair models:
https://keunhong.com/publications/photoshape/

Link for CLEVR:
https://github.com/facebookresearch/clevr-dataset-gen

Link for natural CAR dataset:
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/

Table 2: Datasets used in our paper (n = number of foreground objects). ‘Azimuth’ describes object
rotation about the up-axis. ‘Elevation’ refers to the camera’s elevation above ground. ‘Scaling’ is the
scale factor applied to foreground objects. ‘Horiz. transl.’ and ‘Depth transl.’ are horizontal/depth
translation of objects relative to the global origin. Ranges represent uniform random distributions.

Name # Images Azimuth Elevation Scaling Horiz. transl. Depth transl.

SYNTH-CARn 80,000 0° – 359° 45° 0.5 – 0.6 –5 – 5 –5 – 5
SYNTH-CHAIRn 100,000 0° – 359° 45° 0.5 – 0.6 –5 – 5 –5 – 5
CLEVRn [4] 100,000 0° – 359° 45° 0.5 – 0.6 –4 – 4 –4 – 4
REAL-CARS [8] 139,714 0° – 359° 0° – 35° 0.5 – 0.8 –3 – 4 –5 – 6

9

https://keunhong.com/publications/photoshape/
https://github.com/facebookresearch/clevr-dataset-gen
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/

SYNTH-CAR1 SYNTH-CAR2 SYNTH-CAR3

CHAIR1 CHAIR2

CLEVR2 CLEVR3 CLEVR4

Figure 10: Samples from the synthetic datasets.

6 Implementation
6.1 Training details
Virtual camera model. We assume a virtual camera with a focal length of 35 mm and a sensor size
of 32 mm (Blender’s default values), which corresponds to an angle of view of 2 arctan 32 mm

2×35 mm =
49.1 degrees (we use the same setup for natural images).

Sampling. We initialise all weights using N (0, 0.2) and biases as 0. For CLEVRn, we use noise
vector dimensions of |z0| = 20 for the background, and |zi| = 60 (for i = 1, . . . , n) for the
foreground objects, to account for their relative visual complexity. Similarly, for SYNTH-CARn and
SYNTH-CHAIRn, we use |z0| = 30 and |zi| = 90 (for i = 1, . . . , n), to account for their relative
visual complexity. For the natural REAL-CAR dataset, we use |z0| = 100 and |z1| = 200. Note that
we only feed z to the 3D features of each object, and not to the 3D scene features and 2D features.
Table 2 provides the ranges we use for sampling the pose θi of foreground objects during training.

Training. We train BlockGAN using the Adam optimiser [5], with β1 = 0.5 and β2 = 0.999. We
use the same learning rate for both the discriminator and the generator. Empirically, we find that
updating the generator twice for every update of the discriminator achieves images with the best

10

visual fidelity. We use a learning rate of 0.0001 for all synthetic datasets. For the natural CARS dataset,
we use a learning rate of 0.00005. We train all datasets with a batch size of 64 for 50 epochs. Training
takes 1.5 days for the synthetic datasets and 3 days for the natural REAL-CARS dataset.

Infrastructure. All models were trained using a single GeForce RTX 2080 GPU.

6.2 Network architecture
We describe the network architecture for the BlockGAN foreground object generator in Table 3, the
BlockGAN background generator in Table 4, and the overall BlockGAN generator in Tables 5 and 6
for synthetic and real datasets, respectively. Note that we use ReLU for the synthetic datasets and
LReLU for the natural CAR dataset after the AdaIN layer. The discriminator is described in Table 7.

In terms of the notation in Section 3 of the main paper, object features have dimensions Ho ×Wo ×
Do × Co = 16× 16× 16× 64, scene features have the same dimensions Hs ×Ws ×Ds × Cs =
16×16×16×64, and camera features have dimensionsHc×Wc = 16×16 (before up-convolutions
to 64× 64) with Cc = 64 channels for synthetic datasets and Cc = 256 channels for natural image
datasets.

As GANs empirically tend to perform better on category-specific datasets, we decided to start with
this assumption. A promising future direction is to adopt a shared rendering layer for objects generated
by different category-specific generators, similar to Aliev et al. [1].

Table 3: Network architecture of the BlockGAN foreground (FG) object generator.

Layer type Kernel size Stride Normalisation Output dimension

Learnt constant tensor — — AdaIN 4× 4× 4× 512

UpConv 3× 3× 3 2 AdaIN 8× 8× 8× 128

UpConv 3× 3× 3 2 AdaIN 16× 16× 16× 64

3D transformation — — — 16× 16× 16× 64

Table 4: Network architecture of the BlockGAN background (BG) object generator.

Layer type Kernel size Stride Normalisation Output dimension

Learnt constant tensor — — AdaIN 4× 4× 4× 256

UpConv 3× 3× 3 2 AdaIN 8× 8× 8× 128

UpConv 3× 3× 3 2 AdaIN 16× 16× 16× 64

3D transformation — — — 16× 16× 16× 64

11

Table 5: Network architecture of the BlockGAN generator for all synthetic datasets.

Layer type Kernel size Stride Activation Norm. Output dimension

n×FG generator (Table 3) — — ReLU — 16× 16× 16× 64

BG generator (Table 4) — — ReLU — 16× 16× 16× 64

Element-wise maximum — — — — 16× 16× 16× 64

Concatenate — — — — 16× 16× (16 · 64)
Conv 1× 1 1 ReLU — 16× 16× 64

UpConv 4× 4 2 ReLU AdaIN 32× 32× 64

UpConv 4× 4 2 ReLU AdaIN 64× 64× 64

UpConv 4× 4 1 ReLU AdaIN 64× 64× 3

Table 6: Network architecture of the BlockGAN generator for the REAL-CARS dataset. Differences
to the synthetic foreground object generator in Table 5 are highlighted in blue.

Layer type Kernel size Stride Activation Normal. Output dimension

FG generator (Table 3) — — LReLU — 16× 16× 16× 64

BG generator (Table 4) — — LReLU — 16× 16× 16× 64

Element-wise maximum — — — — 16× 16× 16× 64

Concatenate — — — — 16× 16× (16 · 64)
Conv 1× 1 1 LReLU — 16× 16× 256

UpConv 4× 4 2 LReLU AdaIN 32× 32× 128

UpConv 4× 4 2 LReLU AdaIN 64× 64× 64

UpConv 4× 4 1 LReLU AdaIN 64× 64× 3

Table 7: Network architecture of the BlockGAN discriminator for both synthetic and real datasets.

Layer type Kernel size Stride Activation Normalisation Output dimension

Conv 5× 5 2 LReLU IN/Spectral 32× 32× 64

Conv 5× 5 2 LReLU IN/Spectral 16× 16× 128

Conv 5× 5 2 LReLU IN/Spectral 8× 8× 256

Conv 5× 5 2 LReLU IN/Spectral 4× 4× 512

Fully connected — — Sigmoid None/Spectral 1

12

References
[1] Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., and Lempitsky, V. Neural point-based

graphics. In ECCV, 2020.

[2] Blender Online Community. Blender – a 3D modelling and rendering package. Blender
Foundation, 2020. URL https://www.blender.org/.

[3] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of
Wasserstein GANs. In NIPS, 2017.

[4] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R.
CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In
CVPR, 2017.

[5] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

[6] Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., and Yang, Y.-L. HoloGAN: Unsupervised
learning of 3D representations from natural images. In ICCV, 2019.

[7] Yang, J., Kannan, A., Batra, D., and Parikh, D. LR-GAN: Layered recursive generative adversarial
networks for image generation. ICLR, 2017.

[8] Yang, L., Luo, P., Change Loy, C., and Tang, X. A large-scale car dataset for fine-grained
categorization and verification. In CVPR, 2015.

13

https://www.blender.org/

