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Figure 1. HyperReel: A novel 6-DoF video representation. HyperReel converts synchronized multi-view video streams into a high-fidelity,
memory efficient scene representation that can be rendered from novel views and time steps at interactive rates. HyperReel’s combination of
high rendering quality, speed, and compactness sets it apart from existing 6-DoF video representations. The upper two rows show 6-DoF
(i.e., varying viewpoint and viewing orientation) rendering of dynamic scenes [9, 48]; the lower two of static scenes [62, 65].

Abstract

Volumetric scene representations enable photorealistic view
synthesis for static scenes and form the basis of several ex-
isting 6-DoF video techniques. However, the volume render-
ing procedures that drive these representations necessitate
careful trade-offs in terms of quality, rendering speed, and
memory efficiency. In particular, existing methods fail to
simultaneously achieve real-time performance, small mem-
ory footprint, and high-quality rendering for challenging
real-world scenes. To address these issues, we present Hy-

perReel — a novel 6-DoF video representation. The two core
components of HyperReel are: (1) a ray-conditioned sample
prediction network that enables high-fidelity, high frame rate
rendering at high resolutions and (2) a compact and memory-
efficient dynamic volume representation. Our 6-DoF video
pipeline achieves the best performance compared to prior
and contemporary approaches in terms of visual quality with
small memory requirements, while also rendering at up to
18 frames-per-second at megapixel resolution without any
custom CUDA code.
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1. Introduction
Six–Degrees-of-Freedom (6-DoF) videos allow for free ex-
ploration of an environment by giving the users the ability
to change their head position (3 degrees of freedom) and
orientation (3 degrees of freedom). As such, 6-DoF videos
offer immersive experiences with many exciting applications
in AR/VR. The underlying methodology that drives 6-DoF
video is view synthesis: the process of rendering new, unob-
served views of an environment—static or dynamic—from a
set of posed images or videos. Volumetric scene representa-
tions such as neural radiance fields [32] and instant neural
graphics primitives [33] have recently made great strides
toward photorealistic view synthesis for static scenes.

While several recent works build dynamic view synthe-
sis pipelines on top of these volumetric representations
[15, 24, 25, 37, 68], it remains a challenging task to cre-
ate a 6-DoF video format that can achieve high quality,
fast rendering, and a small memory footprint (even given
many synchronized video streams from multi-view camera
rigs [9, 39, 48]). Existing approaches that attempt to create
memory-efficient 6-DoF video can take nearly a minute to
render a single megapixel image [24]. Works that target ren-
dering speed and represent dynamic volumes directly with
3D textures require gigabytes of storage even for short video
clips [61]. While other volumetric methods achieve memory
efficiency and speed by leveraging sparse or compressed
volume storage for static scenes [11, 33], only contemporary
work [23, 53] addresses the extension of these approaches to
dynamic scenes. Moreover, all of the above representations
struggle to capture highly view-dependent appearance, such
as reflections and refractions caused by non-planar surfaces.

In this paper, we present HyperReel, a novel 6-DoF video
representation that achieves state-of-the-art quality while
being memory efficient and real-time renderable at high res-
olution. The first ingredient of our approach is a novel ray-
conditioned sample prediction network that predicts sparse
point samples for volume rendering. In contrast to exist-
ing static view synthesis methods that use sample networks
[21, 34], our design is unique in that it both (1) acceler-
ates volume rendering and at the same time (2) improves
rendering quality for challenging view-dependent scenes.

Second, we introduce a memory-efficient dynamic vol-
ume representation that achieves a high compression rate
by exploiting the spatio-temporal redundancy of a dynamic
scene. Specifically, we extend Tensorial Radiance Fields [11]
to compactly represent a set of volumetric keyframes, and
capture intermediate frames with trainable scene flow.

The combination of these two techniques comprises our
high-fidelity 6-DoF video representation, HyperReel. We
validate the individual components of our approach and our
representation as a whole with comparisons to state-of-the-
art sampling network-based approaches for static scenes as
well as 6-DoF video representations for dynamic scenes. Not

only does HyperReel outperform these existing works, but it
also provides high-quality renderings for scenes with chal-
lenging non-Lambertian appearances. Our system renders at
up to 18 frames-per-second at megapixel resolution without
using any custom CUDA code.

The contributions of our work include the following:

1. A novel sample prediction network for volumetric view
synthesis that accelerates volume rendering and accu-
rately represents complex view-dependent effects.

2. A memory-efficient dynamic volume representation
that compactly represents a dynamic scene.

3. HyperReel, a 6-DoF video representation that achieves
a desirable trade-off between speed, quality, and mem-
ory, while rendering in real time at high resolutions.

2. Related Work
Novel View Synthesis. Novel-view synthesis is the pro-
cess of rendering new views of a scene given a set of input
posed images. Classical image-based rendering techniques
use approximate scene geometry to reproject and blend
source image content onto novel views [10, 41, 50]. Recent
works leverage the power of deep learning and neural fields
[69] to improve image-based rendering from both structured
(e.g., light fields [17, 22]) and unstructured data [7, 54].
Rather than performing image-based rendering, which re-
quires storing the input images, another approach is to op-
timize some 3D scene representation augmented with ap-
pearance information [45]. Examples of such representa-
tions include point clouds [1, 44], voxel grids [29, 35, 51],
meshes [46, 47], or layered representations like multi-plane
[13, 31, 72] or multi-sphere images [2, 9].

Neural Radiance Fields. NeRFs are one such 3D scene
representation for view synthesis [32] that parameterize the
appearance and density of every point in 3D space with a
multilayer perceptron (MLP). While NeRFs enable high-
quality view synthesis at a small memory cost, they do not
lend themselves to real-time rendering. To render the color
of a ray from a NeRF, one must evaluate and integrate the
color and opacity of many points along a ray—necessitating,
in the case of NeRF, hundreds of MLP evaluations per pixel.
Still, due to its impressive performance for static view syn-
thesis, recent methods build on NeRFs in the quest for higher
visual quality, more efficient training, and faster rendering
speed [16, 58]. Several works improve the quality of NeRFs
by accounting for finite pixels and apertures [5, 67], by en-
abling application to unbounded scenes [6, 70, 71], large
scenes [30, 57] or by modifying the representation to allow
for better reproduction of challenging view-dependent ap-
pearances like reflections and refractions [8, 18, 20, 59]. One
can achieve significant training and inference speed improve-
ments by replacing the deep multilayer perceptron with a
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feature voxel grid in combination with a small neural net-
work [11, 33, 55] or no network at all [19, 70]. Several other
works achieve both fast rendering and memory-efficient stor-
age with tensor factorizations [11], learned appearance code-
books, or quantized volumetric features [56].

Adaptive Sampling for Neural Volume Rendering.
Other works aim to improve the speed of volumetric repre-
sentations by reducing the number of volume queries re-
quired to render a single ray. Approaches like DoNeRF
[34], TermiNeRF [42], and AdaNeRF [21] learn weights
for each segment along a ray as a function of the ray itself,
and use these weights for adaptive evaluation of the under-
lying NeRF. In doing so, they can achieve near-real-time
rendering. NeuSample [12] replaces the NeRF coarse net-
work with a module that directly predicts the distance to each
sample point along a ray. Methods like AutoInt [27], DIVeR
[66], and neural light fields [4, 26, 52] learn integrated opac-
ity and color along a small set of ray segments (or just one
segment), requiring only a single network evaluation per
segment. A key component of our framework is a flexible
sampling network, which is among one of the few schemes
that both accelerates volume rendering, and also improves
volume rendering quality for challenging scenes.

6–Degrees-of-Freedom Video. 6-DoF video is an emer-
gent technology that allows users to explore new views
within videos [45]. Systems for 6-DoF video [39] use multi-
view camera rigs that capture a full 360-degree field of view
and use variants of depth-based reprojection [49] for view
synthesis at each frame of the video. Other methods optimize
time-varying multi-sphere images (MSIs) [2, 9], which can
provide better visual quality but at a higher training cost.

6-DoF from Monocular Captures. Due to the success of
neural radiance fields for static view synthesis, many recent
approaches attempt to extend volumetric scene representa-
tions to dynamic scenes. Several such works reconstruct
6-DoF video from single-view (i.e. monocular) RGB se-
quences [15, 25, 28, 37]. This is a highly under-constrained
setting, which requires decoupling camera and object mo-
tion. The natural signal priors provided by neural radiance
fields help during reconstruction. However, most methods
typically rely on additional priors, such as off-the-shelf net-
works for predicting scene flow and geometry or depth from
ToF cameras [3, 68]. Still, other approaches model the scene
at different time steps as smoothly “warped” copies of some
canonical frame [37, 43], which works best for small tempo-
ral windows and smooth object motion.

6-DoF from Multi-View Captures. Other methods, like
ours, aim to produce 6-DoF video from multi-view camera
rigs [9, 24, 29]. Despite the additional constraints provided
by multiple cameras, this remains a challenging task; an ideal
6-DoF video format must simultaneously achieve high visual
quality, rendering speed, and memory efficiency. Directly

extending recent volumetric methods to dynamic scenes can
achieve high quality and rendering speed [61], but at the
cost of substantial memory requirements, potentially giga-
bytes of memory [70] for each video frame. Contemporary
works such as StreamRF [23] and NeRFPlayer [53] design
volumetric 6-DoF video representations that mitigate storage
requirements but sacrifice either rendering speed or visual
quality. On the other hand, our approach achieves both fast
and high-quality 6-DoF video rendering while maintaining a
small memory footprint.

3. Method
We start by considering the problem of optimizing a volu-
metric representation for static view synthesis. Volume repre-
sentations like NeRF [32] model the density and appearance
of a static scene at every point in the 3D space. More specif-
ically, a function Fθ : (x, ω⃗) → (Le(x, ω⃗), σ(x)) maps
position x and direction ω⃗ along a ray to a color Le(x, ω⃗)
and density σ(x). Here, the trainable parameters θ may be
neural network weights, N -dimensional array entries, or a
combination of both.

We can then render new views of a static scene with

C(o, ω⃗) =

∫ tf

tn

T (o,xt)︸ ︷︷ ︸
Transmittance

σ(xt)︸ ︷︷ ︸
Density

Le(xt, ω⃗)︸ ︷︷ ︸
Radiance

dt, (1)

where T (o,xt) denotes the transmittance from o to xt.
In practice, we can evaluate Equation 1 using numerical

quadrature by taking many sample points along a given ray:

C(o, ω⃗) ≈
N∑

k=1

wk Le(xk, ω⃗) , (2)

where the weights wk = T̂ (o,xk) (1−e−σ(xk)∆xk) specify
the contribution of each sample point’s color to the output.

3.1. Sample Networks for Volume Rendering

Most scenes consist of solid objects whose surfaces lie on a
2D manifold within the 3D scene volume. In this case, only
a small set of sample points contributes to the rendered color
for each ray. To accelerate volume rendering, we would like
to query color and opacity only for points with non-zero wk.
While most volume representations use importance sampling
and pruning schemes that help reduce sample counts, they
often require hundreds or even thousands of queries per ray
to produce accurate renderings [11, 33].

As shown in Figure 2, we use a feed-forward network
to predict a set of sample locations xk. Specifically, we use
a sample prediction network Eϕ : (o, ω⃗) → (x1, . . . ,xn)
that maps a ray (o, ω⃗) to the sample points xk for volume
rendering in Equation 2. We use either the two-plane param-
eterization [22] (for forward facing scenes) or the Plücker
parameterization (for all other scenes) to represent the ray:

r = Plücker(o, ω⃗) = (ω⃗, ω⃗ × o) . (3)
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Figure 2. Overview of HyperReel for static scenes. Given a set of images and camera poses, the training objective is to reconstruct the
measured color associated with every ray. (a) For a ray originating at the camera origin o and traveling in direction ω⃗, we first reparameterize
the ray using Plücker coordinates. (b) A network Eϕ takes this ray as input and outputs the parameters for a set of geometric primitives
{Gk} (such as axis-aligned planes and spheres) and displacement vectors {dk}. (c) To generate sample points {xk} for volume rendering,
we compute the intersections between the ray and the geometric primitives, and add the displacement vectors to the results. (d) Finally, we
perform volume rendering via Equation 2 to produce a pixel color and supervise training based on the corresponding observation.

While many designs for the sample prediction network Eϕ

are possible, giving the network too much flexibility may
negatively affect view synthesis quality. For example, if
(x1, . . . ,xn) are completely arbitrary points, then renderings
may not appear to be multi-view-consistent.

To address this problem, we choose to predict the param-
eters of a set of geometric primitives G1, . . . , Gn defined in
the world coordinate frame, where the primitive parameters
themselves are a function of the input ray. To get our sample
points, we then intersect the ray with each primitive:

Eϕ(o, ω⃗) = (G1, . . . , Gn) , (4)
(x1, . . . ,xn) = (inter(G1;o, ω⃗), . . . , inter(Gn;o, ω⃗)). (5)

Above, inter(Gk;o, ω⃗) is a differentiable operation that in-
tersects the ray with the primitive Gk. In all of our exper-
iments, we use axis-aligned z-planes (for forward-facing
scenes) or concentric spherical shells centered at the origin
(for all other scenes) as our geometric primitives.

This approach is constrained in that it produces sample
points that initially lie along the ray. Further, predicting prim-
itives defined in world space makes the sample signal easier
to interpolate. For example, if two distinct rays observe the
same point in the scene, then the sample network needs only
predict one primitive for both rays (i.e., defining a primitive
that passes through the point). In contrast, existing works
such as NeuSample [12], AdaNeRF [21], and TermiNeRF
[42] predict distances or per-segment weights that do not
have this property.

Flexible Sampling for Challenging Appearance. To
grant our samples additional flexibility to better represent
challenging view-dependent appearance, we also predict a
set of Tanh-activated per-sample-point offsets (e1, . . . , en),
as well as a set of scalar values (δ1, . . . , δn). We convert

Figure 3. Extracting sample point appearance and opacity in
the dynamic setting from our keyframe-based representation.
(1) We first advect the sample points {xk} at time τ into the nearest
keyframe τi, using velocities {vk} from the sample prediction net-
work. (2) We then query the outer products of space-time textures in
order to produce per-sample-point appearance and opacity features,
which are converted to colors/densities via Equation 10.

these scalar values to weights with a sigmoid activation, i.e.,
(γ(δ1), . . . , γ(δn)) where γ is the sigmoid operator. Specifi-
cally, we have:

(d1, . . .dn) = (γ(δ1)e1, . . . , γ(δn)en) (6)
(x1, . . .xn)← (x1 + d1, . . . ,xn + dn) , (7)

where we use (d1, . . . ,dn) to denote the final displacement,
or “point-offset” added to each point.

While the sample network outputs may appear to be over-
parameterized and under-constrained, this is essential to
achieve good-quality view synthesis. In particular, initial-
izing the scalars (δ1, . . . , δn) to negative values, where the
sigmoid is close to 0, and its gradient is small, implicitly
discourages the network from unmasking the point offsets,
while still allowing the network to use them as necessary.
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In addition to enabling real-time rendering with low sam-
ple counts, one added benefit of our sample network architec-
ture is the improved modeling of complex view-dependent
appearance. For example, distorted refractions break epipolar
geometry and appear to change the depth of the refracted con-
tent depending on the viewpoint. As illustrated in Figure 2,
our sample network, on the other hand, has the flexibility to
model sample points that warp depending on viewpoint, sim-
ilar to flow-based models of scene appearance in IBR [36]

Existing works like Eikonal fields [8] can be considered a
special case of this sample warping approach; they use phys-
ically derived Eikonal constraints to learn ray-conditional
warp fields for refractive objects. Although our sample net-
work is not guaranteed to be physically interpretable, it can
handle both reflections and refractions. Further, it is far more
efficient at inference time and does not require evaluating
costly multi-step ODE solvers during rendering. See Fig-
ure 1 and our supplemental materials for additional results
and comparisons on challenging view-dependent scenes.

3.2. Keyframe-Based Dynamic Volumes

So far, we have covered how to efficiently sample a 3D scene
volume, but have not yet discussed how we represent the
volume itself. In the static case, we use memory-efficient Ten-
sorial Radiance Fields (TensoRF) approach (Section 3.2.1),
and in the dynamic case we extend TensoRF to a keyframe-
based dynamic volume representation (Section 3.2.2).

3.2.1 Representing 3D Volumes with TensoRF [11]

Recall that TensoRF factorizes a 3D volume as a set of
outer products between functions of one or more spatial
dimensions. Specifically, we can write the set of spherical
harmonic coefficients A (xk) capturing the appearance of a
point xk = (xk, yk, zk) as:

A (xk) = B1(f1(xk, yk)⊙ g1(zk))

+ B2(f2(xk, zk)⊙ g2(yk)) (8)
+ B3(f3(yk, zk)⊙ g3(xk)) .

Above, fj and gj are vector-valued functions with output
dimension M , and ‘⊙’ is an element-wise product. In the
original TensoRF work [11], the functions fj and gj are dis-
cretized into M different 2D and and 1D arrays, respectively.

Further, Bj denote linear transforms that map the products
of fj and gj to spherical harmonic coefficients. The color
Le(xk, ω⃗) for point xk and direction ω⃗ is then given by
the dot product of the coefficients A (xk) and the spherical
harmonic basis functions evaluated at ray direction ω⃗.

Similar to appearance, for density, we have:

σ(xk) = 1⊤ (h1(xk, yk)⊙ k1(zk))

+ 1⊤ (h2(xk, zk)⊙ k2(yk)) (9)

+ 1⊤ (h3(yk, zk)⊙ k3(xk)) ,

where 1 is a vector of ones, and hj and kj are vector-
valued functions with output dimension M . Given the color
Le(xk, ω⃗) and density σ(xk) for all sample points {xk}
along a ray, we can then make use of Equation 2 to render
the final color for that ray.

3.2.2 Representing Keyframe-Based Volumes

To handle dynamics, we adapt TensoRF to parameterize
volumetric “keyframes”, or snapshots of a dynamic volume
at a set of discrete time steps. If we denote τi as the time
step corresponding to the ith keyframe, we can write:

A (xk, τi) = B1(f1(xk, yk)⊙ g1(zk, τi))

+ B2(f2(xk, zk)⊙ g2(yk, τi)) (10)
+ B3(f3(yk, zk)⊙ g3(xk, τi)) ,

σ(xk, τi) = 1⊤ (h1(xk, yk)⊙ k1(zk, τi))

+ 1⊤ (h2(xk, zk)⊙ k2(yk, τi)) (11)

+ 1⊤ (h3(yk, zk)⊙ k3(xk, τi)) ,

where the only change from Section 3.2.1 is that gj and kj

now depend on time, in addition to one spatial dimension.
We note that the above factorization of the dynamic vol-

ume representing all keyframes in a video has a similar mem-
ory footprint to a static TensoRF for a single frame, assuming
that the number of keyframes is small relative to the reso-
lution of our spatial dimensions. In particular, if the spatial
resolution of our volume is (Nx, Ny, Nz) and the number of
keyframes is Nt, then we can store a single component of f1
with an Nx ×Ny array, and store a single component of g1

with an Nz ×Nt array. Because Nt ≪ Nx/y/z , the arrays
gj do not contribute significantly to the size of the model.

3.2.3 Rendering from Keyframe-Based Volumes

In order to combine our sampling procedure (Section 3.1)
and keyframe-based volume representation (Section 3.2.2)
to complete our system for 6-DoF video, a few additional
modifications are required. First, since the surfaces in a dy-
namic scene move over time, the sample points {xk} should
be time dependent. We therefore augment our sample predic-
tion network to take the current time τ as input. Second, the
decomposition of the dynamic scene in Section 3.2.2 creates
temporal “snapshots” of the volume at discrete keyframes τi,
but we would like to sample the volume at arbitrary times
τ . To generate the dynamic volume at all intermediate times,
we also output velocities vk ∈ R3 from the sample predic-
tion network, which we use to advect sample points into the
nearest keyframe τi with a single forward-Euler step:

xk ← xk + vk(τi − τ). (12)

Equation 12 defines a backwards warp with scene flow field
vk that generates the volume at time τ . The process of warp-
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ing sample points and querying the keyframe-based dynamic
volume is illustrated in Figure 3.

After querying the keyframe-based volume with {xk},
the equation for volume rendering is then:

C(o, ω⃗, τ) =

N∑
k=1

wk Le (xk, ω⃗, τi) , (13)

where wk = T̂ (o,xk, τi) (1− e−σ(xk,τi)∆xk), and τi is the
time step corresponding to the closest keyframe to time τ .
This is effectively the same as Equation 2, except C, xk, wk

and Le now depend on the time τ . The sampling procedure
(Section 3.1), volume representation (Section 3.2.2), and ren-
dering scheme for keyframe-based volumes (Section 3.2.3)
comprise our 6-DoF video representation: HyperReel.

3.3. Optimization

We optimize our representation using only the training im-
ages, and apply total variation and ℓ1 sparsity regularization
to our tensor components, similar to TensoRF [11]:

L = LL2 + wL1LL1 + wTVLTV where (14)

LL2 =
∑
o,ω⃗,τ

∥C(o, ω⃗, τ)− CGT(o, ω⃗, τ)∥. (15)

The loss is summed over training rays and times, and CGT
represents the ground-truth color for a given ray and time.

We only use a subset of all training rays to make the
optimization tractable on machines with limited memory.
In all dynamic experiments, for frame numbers divisible by
4, we alternate between using all training rays and using
training rays from images downsampled by a 4× factor. For
all other instances, we downsample images by an 8× factor.

4. Experiments
Implementation Details. We implement our method in
PyTorch [40] and run experiments on a single NVIDIA RTX
3090 GPU with 24 GB RAM. Our sample network is a 6-
layer, 256-hidden unit MLP with Leaky ReLU activations for
both static and dynamic settings. Unless otherwise specified,
for forward-facing scenes, we predict 32 z-planes as our geo-
metric primitives with our ray-conditioned sample prediction
network. In all other settings, we predict the radii of 32 spher-
ical shells centered at the origin. For our keyframe-based
volume representation, we use the same space contraction
scheme for unbounded scenes as in mip-NeRF 360 [6]. We
give the (x, y) and (z, t) textures eight components each
and four components to all other textures. For all dynamic
datasets, we use every 4th frame as a keyframe. Further, we
split every input video into 50 frame chunks. For each of
these chunks, we train a model for approximately 1.5 hours.

4.1. Comparisons on Static Scenes

DoNeRF Dataset. The DoNeRF dataset [34] contains six
synthetic sequences with images of 800×800 pixel resolu-

Table 1. Static comparisons. We compare our approach to others
on the DoNeRF dataset [34]. See our supplemental material for
comparisons on the LLFF dataset [31]. FPS is normalized per
megapixel; memory in MB.

Dataset Method PSNR↑ FPS↑ Memory ↓

DoNeRF 400×400
Single sample

R2L [60] 35.5 — 23.7

Ours (per-frame) 36.7 4.0 58.8

DoNeRF 800×800

Uniform sampling
NeRF [32] 30.9 0.3 3.8
Instant NGP [33] 33.1 3.8 64.0

Adaptive sampling
DoNeRF [34] 30.8 2.1 4.1
AdaNeRF [21] 30.9 4.7 4.1
TermiNeRF [42] 29.8 2.1 4.1

Ours (per-frame) 35.1 4.0 58.8

Table 2. Dynamic comparisons. We compare HyperReel to exist-
ing 3D video methods. All FPS numbers are for megapixel images,
and memory is in MB per frame. 1On the Neural 3D Video dataset
[24], the authors of Neural 3D Video and StreamRF [23] only eval-
uate their method on the flame salmon sequence. 2StreamRF [23]
does not provide SSIM and LPIPS scores.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ Memory↓

Technicolor [48] Neural 3D Video [24] 31.8 0.958 0.140 0.02 0.6
Ours 32.7 0.906 0.109 4.00 1.2

Neural 3D Video [24]

Neural 3D Video [24]1 29.6 0.961 0.083 0.02 0.1
NeRFPlayer [53] 30.7 0.931 0.111 0.06 17.1
StreamRF [23]1 28.3 —2 —2 10.90 17.7
Ours 31.1 0.927 0.096 2.00 1.2

Google LF videos [9] NeRFPlayer [53] 25.8 0.848 0.196 0.12 17.1
Ours 28.8 0.874 0.193 4.00 1.2

Table 3. Network ablations. We perform several ablations on
our method, including on the number of keyframes, the use of the
sampling network, and model size. All FPS numbers per megapixel.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ FPS↑

Technicolor

Ours (keyframe: every frame) 32.34 0.895 0.117 4.0
Ours (keyframe: every 4 frames) 32.73 0.906 0.109 4.0
Ours (keyframe: every 16 frames) 32.07 0.893 0.112 4.0
Ours (keyframe: every 50 frames) 32.35 0.896 0.110 4.0

Ours (w/o sample network) 29.08 0.815 0.209 1.3
Ours (Tiny) 30.09 0.835 0.157 17.5
Ours (Small) 31.76 0.903 0.125 9.1

Table 4. Point offset ablation. We evaluate the performance of our
network with and without point offsets.

Scene Point offset PSNR↑ SSIM↑ LPIPS↓
DoNeRF “Forest” [34] Without 34.86 0.969 0.0146
(diffuse) With 36.34 0.975 0.0122

Shiny “Lab” [65] Without 31.28 0.943 0.0416
(highly refractive) With 32.49 0.959 0.0294

tion. Here, we validate the efficacy of our sample prediction
network approach by comparing it to existing methods for
static view synthesis, including NeRF, InstantNGP, and three
sampling-network–based approaches [21, 34, 42].
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Ground truth (Technicolor [48]) Ours Neural 3D Video [24]

Ground truth (Neural 3D Video [24]) Ours NeRFPlayer [53]

Ground truth (Google Immersive LF Video [9]) Ours NeRFPlayer [53]

Figure 4. Qualitative comparisons of dynamic reconstruction. We show visual comparisons of our method on three datasets against two
baselines on heldout views. We pick non-keyframe time-steps for evaluation, except for the Google Immersive light field video (last row),
for which we pick the matching image to the NeRFPlayer [53] result. See our project webpage for more results and comparisons.

As demonstrated in Table 1, our approach outperforms all
baselines in terms of quality and improves the performance
of other sampling network schemes by a large margin. Addi-
tionally, our model is implemented in vanilla PyTorch and
renders 800×800 pixel images at 6.5 FPS on a single RTX
3090 GPU (or 29 FPS with our Tiny model).

We also compare our sampling network-based approach
to the single-sample R2L light field representation [60]
on the downsampled 400×400 resolution DoNeRF dataset
(with their provided metrics). We outperform their approach
quantitatively without using pretrained teacher networks.
Further, inference with our six-layer, 256-hidden-unit net-
work, and TensoRF volume backbone is faster than R2L’s
deep 88-layer, 256-hidden-unit MLP.

LLFF Dataset. See supplementary material for additional
quantitative comparisons on the LLFF dataset [32], showing
our network achieving high quality on real-world scenes.

4.2. Comparisons on Dynamic Scenes

Technicolor Dataset. The Technicolor light field dataset
[48] contains videos of varied indoor environments captured
by a time-synchronized 4×4 camera rig. Each image in each
video stream is 2048×1088 pixels, and we hold out the view
in the second row and second column for evaluation. We
compare HyperReel to Neural 3D Video [24] at full image
resolution on five sequences (Birthday, Fabien, Painter, The-

ater, Trains) from this dataset, each 50 frames long. We train
Neural 3D Video on each sequence for approximately one
week on a machine with 8 NVIDIA V100 GPUs.

We show in Table 2 that the quality of HyperReel exceeds
that of Neural 3D Video [24] while also training in just 1.5
GPU hours per sequence (rather than 1000+ GPU hours for
Neural 3D), and rendering far more quickly.

Neural 3D Video Dataset. The Neural 3D Video dataset
[24] contains six indoor multi-view video sequences cap-
tured by 20 cameras at 2704×2028 pixel resolution. We
downsample all sequences by a factor of 2 for training and
evaluation and hold out the central view for evaluation. Met-
rics are averaged over all scenes. Additionally, due to the
challenging nature of this dataset (time synchronization er-
rors, inconsistent white balance, imperfect poses), we output
64 z-planes per ray with our sample network rather than 32.

We show in Table 2 that we quantitatively outperform
NeRFPlayer [53] while rendering approximately 40 times
faster. While StreamRF [23] makes use of a custom CUDA
implementation that renders faster than our model, our ap-
proach consumes less memory on average per frame than
both StreamRF and NeRFPlayer.

Google Immersive Dataset. The Google Immersive
dataset [9] contains light field videos of various indoor and
outdoor environments captured by a time-synchronized 46-
fisheye camera rig. Here, we compare our approach to NeRF-
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Player and select the same seven scenes as NeRFPlayer for
evaluation on this dataset (Welder, Flames, Truck, Exhibit,
Face Paint 1, Face Paint 2, Cave), holding out the central
view for validation. Our results in Table 2 outperform NeRF-
Player’s by a 3 dB margin and renders more quickly.

DeepView Dataset. As Google’s Immersive Light Field
Video [9] does not provide quantitative benchmarks for the
performance of their approach in terms of image quality,
we provide an additional comparison of our approach to
DeepView [13] in the supplementary material.

4.3. Ablation Studies

Number of Keyframes. In Table 3, we ablate our method
on the Technicolor light field dataset with different numbers
of keyframes. Increasing the number of keyframes allows our
model to capture more complex motions, but also distributes
the volume’s capacity over a larger number of time steps.
Our choice of one keyframe for every four frames strikes a
good balance between temporal resolution and spatial rank,
and achieves the best overall performance (Table 3).

Network Size and Number of Primitives. We also show
the performance of our method with different network de-
signs in Table 3, including the performance for a Tiny model
(4-layers, 128-hidden-unit MLP with 8 predicted primitives),
and Small model (4-layers, 256-hidden-unit MLP with 16
predicted primitives). Our Tiny model runs at 18 FPS, and
our Small model runs at 9 FPS at megapixel resolution,
again without any custom CUDA code. Our Tiny model
performs reasonably well but achieves worse quality than
Neural 3D Video on the Technicolor dataset. In contrast, our
Small model achieves comparable overall performance to
Neural3D—showing that we can still achieve good quality
renderings at even higher frame rates. We show accompany-
ing qualitative results for these models in Figure 5.

With and Without Sample Prediction Network. We
show results on the Technicolor dataset without our sam-
ple prediction network, using every frame as a keyframe,
and with 4× the number of samples (128 vs. 32). Our full
method outperforms this approach by a sizeable margin.

With and Without Point Offset. In Table 4, we show
results on two static scenes with and without point offsets
(Equation 7): one diffuse and one highly refractive scene.
Point offsets improve quality in both cases, suggesting that
they may help with better model capacity allocation in ad-
dition to view-dependence—similar to “canonical frame”
deformations used in Nerfies [38] and Neural Volumes [29].

5. Conclusion
HyperReel is a novel representation for 6-DoF video,
which combines a ray-conditioned sampling network with a
keyframe-based dynamic volume representation. It achieves

GT Full model Small Tiny No sampling

Figure 5. Ablations on our sampling network. We show close-up
results for various sampling networks architectures on two of the
Technicolor sequences also shown in Figure 4.

Our result GT Our result GT

Figure 6. Limitations. Our approach can sometimes produce blurry
reconstructions due to the training ray subsampling scheme (Sec-
tion 3.3) (left) or noisy reconstructions in sparsely observed regions
due to an under-constrained sampling network (right).

a balance between high rendering quality, speed, and mem-
ory efficiency that sets it apart from existing 6-DoF video
representations. We qualitatively and quantitatively compare
our approach to prior and contemporary 6-DoF video rep-
resentations, showing that HyperReel outperforms each of
these works along multiple axes.

Limitations and Future Work. Our sample network is
only supervised by a rendering loss on the training images,
and predicts ray-dependent sample points that need not be
consistent between different views. This can lead to a re-
duction in quality for views outside of the convex hull of
the training cameras or for scene content that is only ob-
served in a small number of views—manifesting in some
cases as temporal jittering, view-dependent object motion,
or noisy reconstructions (see Figure 6). Exploring regular-
ization methods that enable reasonable geometry predictions
even for extrapolated views is an important future direction.

Although our keyframe-based representation is more
memory efficient than most existing 3D video formats, it
cannot be streamed like NeRFPlayer [53] or StreamRF [23].
However, our sample network approach is in principle com-
patible with any streaming-based dynamic volume.

Currently, our approach falls short of the rendering speed
required for settings like VR (ideally 72 FPS, in stereo). As
our method is implemented in vanilla PyTorch, we expect to
gain significant speedups with more engineering effort.

Acknowledgments. We thank Thomas Neff, Yu-Lun Liu,
and Xiaoming Zhao for valuable feedback and discussions,
Zhaoyang Lv for help with comparisons [24], and Liangchen
Song for providing information about the Google Immersive
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A. Appendix Overview

Within the appendix, we provide:

1. Additional details regarding training and evaluation for
static and dynamic datasets in Appendix C;

2. Additional details regarding sample network design,
implementation, and training in Appendix D;

3. Additional details regarding keyframe-based volume
design in Appendix E;

4. Additional quantitative comparisons against static view
synthesis approaches on the LLFF [32] and Deep-
View [13] datasets in Appendix F;

5. Additional qualitative comparisons to Neural 3D Video
Synthesis [24] on the Technicolor dataset [48] in Ap-
pendix G;

6. Additional qualitative results for, (a) full 360 degree
FoV captures and (b) highly refractive scenes in Ap-
pendix H;

Further, we provide a full per-scene breakdown of image
metrics for the Technicolor dataset in Table H.1, the Neural
3D Video dataset in Table H.2, and the Google Immersive
Light Field Video dataset in Table H.3.

B. Website Overview
Finally, in addition to our appendix, our supplemental web-
site https://hyperreel.github.io contains:

1. A link to our codebase;

2. Videos of a demo running in real-time at high-resolution
without any custom CUDA code;

3. Dynamic dataset results from our method on each of
Technicolor ([48]), Neural 3D Video ([24]), and Google
Immersive Video ([9]);

4. Qualitative results and comparisons on view-dependent
static scenes from the Shiny Dataset ([65]) and the
Stanford Light Field Dataset ([62]);

5. Qualitative comparison to [9].

C. Additional Training & Evaluation Details
C.1. Training Ray-Subsampling

We provide pseudo-code for our ray-subsampling scheme in
Algorithm 1, which is used to enable more memory efficient
training.

C.2. LPIPS Evaluation Details

For LPIPS computation, we use the AlexNet LPIPS variant
for all of our comparisons in the main paper (as do all of the
baseline methods).

C.3. SSIM Evaluation Details

For SSIM computation, we use the structural similarity
scikit-image library function, with our images normalized
to the range of [0, 1], and the data range parameter set to 1.
We note, however, that several methods either:

1. Use their own implementation of SSIM, which are
not consistent with this standard implementation (e.g.
R2L [61]);
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ALGORITHM 1: Training Ray-Subsampling Scheme
Input: Number of videos {N}, Number of frames {M}
Output: Training Rays raysGT , Ground Truth Colors CGT

// Initialize rays and colors
raysGT = {}
CGT = {}
// Iterate over all N videos
for n ∈ {1, · · · ,N} do

// Iterate over all M frames in video n
for m ∈ {1, · · · ,M} do

// Get frame m from video n
Cn,m = GetFrame(n,m)
// Get corresponding rays for this frame
raysn,m = GetRays(n,m)

if m is not divisible by 8 then
// Downsample rays and colors by a factor of 4
Cn,m ← NearestNeighborDownsample(Cn,m, 4)
raysn,m ← NearestNeighborDownsample(raysn,m, 4)

if m is not divisible by 4 then
// Downsample rays and colors by an additional factor of 2
Cn,m ← NearestNeighborDownsample(Cn,m, 2)
raysn,m ← NearestNeighborDownsample(raysn,m, 2)

end
end
// Add current rays and colors to output
CGT ← CGT + Cn,m

raysGT ← raysGT + raysn,m

end
end

2. Fail to set the data range parameter appropriately, so
that it defaults to the value of 2.0 (e.g. Neural 3D Video
[24]).

In both of these cases, the SSIM function returns higher-
than-intended values. While we believe that this inconsis-
tency makes SSIM scores somewhat less reliable, we still
report our aggregated SSIM metrics in the quantitative result
tables in the main paper.

D. Sample Prediction Network Details
D.1. Additional Training Details

For both static and dynamic datasets, we use a batch size of
16,384 rays for training, an initial learning rate of 0.02 for
the parameters of the keyframe-based volume, and an initial
learning rate of 0.0075 for our sample prediction network.
For Technicolor, Google Immersive, and all static scenes, we
set the wTV weight Equation 14 to 0.05 for both appearance
and density, which is decayed by a factor of 0.1 every 30,000
iterations. On the other hand, wL1 starts at 8·10−5 and decays
to 4·10−5 over 30,000 iterations and is only applied to the
density components.

D.2. Additional Network Details

In order to make it so that the sample network outputs
(primitives G1, . . . , Gn, point offsets d1, . . . ,dn, velocities
v1, . . . ,vn) vary smoothly, we use 1 positional encoding
frequency for the ray r (in both static and dynamic settings)
and 2 positional encoding frequencies for the time step τ (in
dynamic settings).

D.3. Forward Facing Scenes

For forward facing scenes, we first convert all rays to normal-
ized device coordinates (NDC) [32], so that the view frustum
of a “reference” camera lives within [−1, 1]3. After mapping
a ray with origin o and direction ω⃗ to its two-plane parame-
terization [22] (with planes at z = −1 and z = 0), we predict
the parameters of a set of planes normal to the z-axis with
our sample network. In particular, we predict (z1, . . . , zn),
and intersect the ray with the axis-aligned planes at these
distances to produce our sample points (x1, . . . ,xn). Addi-
tionally, we initialize the values (z1, . . . , zn) in a stratified
manner, so that they uniformly span the range of [−1, 1].
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D.4. Outward Facing Scenes

For all other (outward facing) scenes, we map a ray to its
Plücker parameterization via

r = Plücker(o, ω⃗) = (ω⃗, ω⃗ × o) . (16)

and predict the radii of a set of spheres centered at the origin
(r1, . . . , rn). We then intersect the ray with each sphere to
produce our sample points. We initialize (r1, . . . , rn) so that
they range from the minimum distance to the maximum
distance in the scene.

D.5. Differentiable Intersection

In both of the above cases, we make use of the implicit form
of each primitive (for planes normal to the z-axis, z = zk,
and for the spheres centered at the origin x2+y2+ z2 = r2k)
and the parameteric equation for a ray o+ tkω⃗, to solve for
the intersection distances tk (as is done in typical ray-tracers).
The intersection distance is differentiable with respect to the
primitive parameters, so that gradients can propagate from
the color loss to the sample network.

D.6. Implicit Color Correction

In order to better handle multi-view datasets with inconsis-
tent color correction / white balancing, we also output a color
scale cscale

k and shift cshift
k from the sample prediction network

for each sample point xk. These are used to modulate the
color Le(xk, ω⃗, τi) extracted from the dynamic volume via:

Le(xk, ω⃗, τi)← Le(xk, ω⃗, τi) · cscale
k + cshift

k . (17)

Note that these outputs vary with low-frequency with respect
to the input ray (since we use few positional encoding fre-
quencies for the sample prediction network). Additionally,
the density from the volume remains unchanged.

E. Keyframe-Based Volume Details
We initialize our keyframe-based dynamic volume within a
1283 grid, so that each of the spatial tensor components have
resolution 128×128. Our final grid size is 6403. We upsam-
ple the volume at iterations 4,000, 6,000, 8,000, 10,000, and
12,000, interpolating the resolution linearly in log space.

F. Quantitative Comparisons
F.1. LLFF Dataset

The LLFF dataset [32] contains eight real-world sequences
with 1008×756 pixel images. In Table F.1, we compare our
method to the same approaches as above on this dataset.
Our approach outperforms DoNeRF, AdaNeRF, TermiNeRF,
and InstantNGP but achieves slightly worse quality than
NeRF. This dataset is challenging for explicit volume repre-
sentations (which have more parameters and thus can more

Table F.1. Quantitative comparisons on LLFF. We compare our
approach to others on the real-world LLFF dataset [32]. FPS is
normalized per megapixel; memory in MB.

Dataset Method PSNR↑ FPS↑ Memory ↓

LLFF 504×378
Single sample

R2L [60] 27.7 — 23.7

Ours (per-frame) 27.5 4.0 58.8

LLFF 1008×756

Uniform sampling
NeRF [32] 26.5 0.3 3.8
Instant NGP [33] 25.6 5.3 64.0

Adaptive sampling
DoNeRF [34] 22.9 2.1 4.1
AdaNeRF [21] 25.7 5.6 4.1
TermiNeRF [42] 23.6 2.1 4.1

Ours (per-frame) 26.2 4.0 58.8

Table F.2. Quantitative comparisons to DeepView. In addition to
the comparison to NeRFPlayer, we report a comparison with Deep-
View [13], a variant of which is used per-frame in immersive LF
video [9]. We thus compare to DeepView as a proxy for quantitative
comparison. FPS normalized per megapixel.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ FPS↑

Spaces [13] DeepView [13] 31.60 0.965 0.085 >100
Ours 35.47 0.968 0.080 4.0

easily overfit to the training images) due to a combination
of erroneous camera calibration and input-view sparsity. For
completeness, we also include a comparison to R2L on the
downsampled 504×378 LLFF dataset, where we perform
slightly worse in terms of quality.

F.2. DeepView Dataset

Unfortunately, Google’s Immersive Light Field Video [9]
does not provide quantitative benchmarks for the perfor-
mance of their approach in terms of image quality. As a
proxy, we compare our approach to DeepView [13], the
method upon which their representation is built, on the static
Spaces dataset in Table F.2.

Our method achieves superior quality, outperforming
DeepView by a large margin. Further, HyperReel consumes
less memory per frame than the Immersive Light Field
Video’s baked layered mesh representation: 1.2 MB per
frame vs. 8.87 MB per frame (calculated from the reported
bitrate numbers [9]). Their layered mesh can render at more
than 100 FPS on commodity hardware, while our approach
renders at a little over 4 FPS. However, our approach is en-
tirely implemented in vanilla PyTorch and can be further
optimized using custom CUDA kernels or baked into a real-
time renderable representation for better performance.
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G. Qualitative Comparisons to Neural 3D [24]
We provide additional qualitative still-frame comparisons to
Neural 3D Video Synthesis [24] in Figure H.1.

H. Additional Results
H.1. Panoramic 6-DoF Video

In general, our method can support an unlimited FoV. We
show a panoramic rendering of a synthetic 360 degree scene
from our model, using spherical primitives in Figure H.2.

H.2. Point Offsets for Modeling Refractions

Point offsets allow the sample network to capture appear-
ance that violates epipolar constraints, noticeably improving
quality for refractive scenes. We show a visual comparison
between our approach with and without point offsets in Fig-
ure H.3. More results are available on the website.
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Ground truth (Technicolor [48]) Ours Neural 3D Video [24]

Figure H.1. Additional qualitative comparisons to Neural 3D Video Synthesis. We show two additional qualitative comparisons against
Neural 3D Video Synthesis [24] on the Technicolor dataset [48], demonstrating that our approach recovers more accurate/detailed appearance.

Figure H.2. Example panoramic rendering from our approach applied to a synthetic scene with captures spanning a full 360 degree FoV. In
this case, our sample network predicts spherical geometric primitives. The scene is one of the shots from the Blender Foundations Agent 327
open movie [14].

Tarot

GT w/ offset w/o offset

Tarot

GT w/ offset w/o offset

Figure H.3. Comparison of our method with and without point offset on the Tarot sequence from the Stanford Light Field dataset [63] and
Lab sequence from the Shiny dataset [64].
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Table H.1. Per-scene results from the Technicolor dataset [48]. See Section Appendix C.3 for a discussion of the reliability of SSIM metrics.

Scene
PSNR↑ SSIM↑ LPIPS↓

Neural 3D Video [24] Ours Small Tiny Neural 3D Video [24] Ours Small Tiny Neural 3D Video [24] Ours Small Tiny

Birthday 29.20 29.99 29.32 27.80 0.952 0.922 0.907 0.876 0.0668 0.0531 0.0622 0.0898
Fabien 32.76 34.70 33.67 32.25 0.965 0.895 0.882 0.860 0.2417 0.1864 0.1942 0.2233
Painter 35.95 35.91 36.09 34.61 0.972 0.923 0.920 0.905 0.1464 0.1173 0.1182 0.1311
Theater 29.53 33.32 32.19 30.74 0.939 0.895 0.880 0.845 0.1881 0.1154 0.1306 0.1739
Trains 31.58 29.74 27.51 25.02 0.962 0.895 0.835 0.773 0.0670 0.0723 0.1196 0.1660

Table H.2. Per-scene results from the Neural 3D Video dataset [24], available only for our method and NeRFPlayer [53].

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRFPlayer [53] Ours NeRFPlayer [53] Ours NeRFPlayer [53] Ours

Coffee Martini 31.534 28.369 0.951 0.892 0.085 0.127
Cook Spinach 30.577 32.295 0.929 0.941 0.113 0.089
Cut Roasted Beef 29.353 32.922 0.908 0.945 0.144 0.084
Flame Salmon 31.646 28.260 0.940 0.882 0.098 0.136
Flame Steak 31.932 32.203 0.950 0.949 0.088 0.078
Sear Steak 29.129 32.572 0.908 0.952 0.138 0.077

Table H.3. Per-scene results from the Google Immersive Light Field Video dataaset [9], available only for our method and NeRFPlayer [53].

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRFPlayer [53] Ours NeRFPlayer [53] Ours NeRFPlayer [53] Ours

01 Welder 25.568 25.554 0.818 0.790 0.289 0.281
02 Flames 26.554 30.631 0.842 0.905 0.154 0.159
04 Truck 27.021 27.175 0.877 0.848 0.164 0.223
09 Exhibit 24.549 31.259 0.869 0.903 0.151 0.140
10 Face Paint 1 27.772 29.305 0.916 0.913 0.147 0.139
11 Face Paint 2 27.352 27.336 0.902 0.879 0.152 0.195
12 Cave 21.825 30.063 0.715 0.881 0.314 0.214
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