
InverseFaceNet: Deep Monocular Inverse Face Rendering
— Supplemental Material —

Hyeongwoo Kim 1, 2 Michael Zollhöfer 1, 2, 3 Ayush Tewari 1, 2

Justus Thies 4 Christian Richardt 5 Christian Theobalt 1, 2

1 Max-Planck-Institute for Informatics 2 Saarland Informatics Campus
3 Stanford University 4 Technical University of Munich 5 University of Bath

10m10mm

0mm

m

0mm

Input Estimate Geometry Error Input Estimate Geometry Error

Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate
from just a single input image. We jointly recover the facial pose, shape, expression, reflectance and incident scene illumination. From left to
right: the input photo, our estimated face model, its geometry, and the pointwise Euclidean geometry error compared to Garrido et al. [3].

This document provides additional discussion, comparisons
and results for our approach. We discuss technical details
on how we evaluate the self-supervised bootstrapping ap-
proach using a synthetic test set in Section 1. Also, we pro-
vide quantitative and qualitative comparisons in Sections 2
and 3, respectively, to further demonstrate the accuracy and
effectiveness of our approach. Finally, we demonstrate the
robustness of our approach on a wide range of challenging
face images in Section 4.

1. Self-Supervised Bootstrapping
To evaluate the strength of our self-supervised bootstrapping
step in the training loop, we use synthetic validation images,
as it is difficult to acquire the ground-truth parameters for
real-world images. This section explains in more detail the
evaluation shown in Section 7.2 and Figure 4 of the main
document, in particular the image sets used for training,
bootstrapping and validation.

We first generate a set of 50,000 training images with a
parameter distribution that has little variation; the mouth,
for instance, is not opening much. We then modify the dis-
tribution with a bias and more variation in face expression
and color to simulate real-world images, and generate two
sets of 5,000 images each for bootstrapping and validation.
The difference between the image sets is clearly visible in
Figure 2.

In this evaluation, InverseFaceNet uses a set of 5,000
images without the corresponding parameters for self-
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Figure 2. Images used for training (top) and testing (bottom) in the
bootstrapping evaluation. The synthetic examples for testing and
bootstrapping are sampled from a wider distribution than the train-
ing images. Thus, there is more variation in face shape, expression
and color, such as mouth opening and colored illumination.

supervised bootstrapping. The initialization, used weights
and number of training iterations are explained in the main
document. For evaluation, we visualize the face parameters
estimated from premature to fully domain-adapted networks,
i.e., along the bootstrapping iterations, in the testing phase
as shown in Figure 3. In addition, we compute the model-
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Figure 3. Comparison of baseline and bootstrapping approaches on a synthetic test corpus with higher parameter variation than in the used
training corpus (also synthetic). Top: Reconstructions of an unseen input image after different numbers of bootstrapping iterations. Notice
how the reconstructions with bootstrapping gradually converge towards the ground-truth face model (right), e.g., opening the mouth, while
the baseline approach does not improve visibly over time. The last two columns visualize the photometric (2× scaled) and geometric errors
at the final bootstrapping step. The mean photometric error is 16.74 pixels in the L1-norm distance for the baseline method, and 12.11 pixels
after bootstrapping. The Hausdorff distance is 2.56 mm and 2.01 mm for the baseline method and after bootstrapping, respectively. Bottom:
Model-space parameter loss for the baseline and bootstrapping approaches. While our domain-adaptive bootstrapping approach continuously
decreases the error by adapting the parameter distribution based on a higher variation corpus without available ground truth, the baseline
network overfits to the training data and fails to generalize to the unseen data.

space parameter loss of the validation image set. With the
visual and numeric metrics, the performance of bootstrapped
InverseFaceNet is compared against a vanilla AlexNet with-
out bootstrapping. The decrease of the model-space loss via
bootstrapping substantiates that the parameter distribution
of the training set is automatically adapted to better match
the image set used for bootstrapping, i.e., more mouth open-
ing is added to the initial training set. This is in contrast to
the regressed face with a closed mouth, and non-decreasing
model-space parameter error by the baseline method, which
estimates the best possible parameters only within the initial
training set. On the basis of this evaluation, we conclude that
our self-supervised bootstrapping approach results in better
generalization to unseen input images in the real-world sce-
nario. For an evaluation on real-world face images, we refer
to the main document.

2. Additional Quantitative Evaluation
In addition to the quantitative evaluation on FaceWarehouse
[1] in the main document, we here evaluate and compare
our approach on a challenging video sequence (300 frames
of Volker [13]). As ground-truth geometry, we use the high-
quality binocular reconstructions of Valgaerts et al. [13]. Our
approach outperforms Tewari et al. [11] on this sequence,

and comes close to the optimization-based results of Garrido
et al. [3], which is orders of magnitude slower than our
approach (2 minutes vs our 9.4 ms).

Table 1. Quantitative evaluation of the geometric accuracy on 300
frames of the Volker dataset [13].

Ours Garrido et al. [3] Tewari et al. [11]
Error 2.10 mm 1.96 mm 2.94 mm
SD 0.42 mm 0.35 mm 0.28 mm

3. Qualitative Evaluation
In the following, we show additional results and comparisons
that unfortunately did not fit into the limited space of the
main document. Specifically, we compare to the approaches
of Richardson et al. [8], Sela et al. [9], Jackson et al. [5],
Tran et al. [12], Tewari et al. [11], Garrido et al. [2] and
Garrido et al. [3] on a variety of challenging face datasets,
including LFW (Labeled Faces in the Wild) [4], 300-VW
(300 Videos in the Wild) [10], CelebA [6], FaceWarehouse
[1], Volker [13] and Thomas [2]. The results are shown in
Figure 4 to Figure 9.

We compare to the results of Richardson et al.’s
‘CoarseNet’ [8] and Sela et al.’s aligned template mesh [9]
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Figure 4. Qualitative comparison to Richardson et al. [8] on LFW
[4]. Note that our reconstruction results are colored, and better fit
the face shape and mouth expressions of the input images.

as we are interested in comparing the reconstructed para-
metric face models. As can be seen in Figures 4 and 5, we
obtain similar or even higher quality results than these two
state-of-the-art approaches. Note that their approaches do
not require landmarks for initial cropping, but they are sig-
nificantly slower due to their iterative regression strategy
[8] or the involved non-rigid registration [9], and do not re-
cover color reflectance. In contrast, our approach provides a
one-shot estimate of all face model parameters.

Jackson et al. [5] recover coarse volumetric reconstruc-
tions, and do not reconstruct facial appearance or illumina-
tion (Figure 6). In contrast to Richardson et al. [7, 8] and
Jackson et al. [5], our approach obtains an estimate of the
colored skin reflectance and illumination.

The approach of Tran et al. [12] is targeted at face recog-
nition, and thus does not recover the facial expression and
illumination (Figure 7). Our results are comparable to Tewari
et al. [11], but we avoid the geometric shrinking seen in Fig-
ure 8. Notice that their estimated geometry is visibly thinner
than the input faces. Our approach also obtains similar qual-
ity results (Figure 9) as the optimization-based approaches
by Garrido et al. [2, 3], while being several orders of magni-
tude faster. For a detailed discussion, we refer the reader to
the main document.

4. Additional Results
Our approach works well even for the challenging images
shown in Figure 10 with different head orientations (rows
one and two), challenging expressions (rows three to five),
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Figure 5. Qualitative comparison to Sela et al. [9] on CelebA [6]
(top 2 rows) and 300-VW [10] datasets. From top to bottom: our
approach reconstructs facial reflectance and reliable shape, while
theirs does not recover reflectance or illumination, and suffers from
global shape distortion.
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Figure 6. Qualitative comparison to Jackson et al. [5] on LFW [4].
Our reconstruction results include reflectance and illumination, and
better fit the face shape.

and variation in skin reflectance (rows four to six). Our ap-
proach provides perceptually more plausible reconstructions
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Figure 7. Qualitative comparison to Tran et al. [12] on images
of the CelebA [6] (top 3 rows) and LFW [4] (rest) datasets: our
approach reconstructs expressions, while theirs cannot recover this
dimension (arrows).

due to our novel model-space loss and the self-supervised
bootstrapping that automatically adapts the parameter dis-
tribution to match the real world. For more results and a
detailed discussion, we refer the reader to the main docu-
ment.
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Figure 9. Qualitative comparison to optimization-based approaches
[2, 3] on the Thomas dataset [2].
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Figure 10. Qualitative results on several datasets. Left to right: input
image, our estimated face model and geometry, and contours (red:
input mask, green: ours). Top to bottom: LFW [4], 300-VW [10],
CelebA [6], FaceWarehouse [1], Volker [13] and Thomas [2]. Our
approach achieves high-quality reconstructions of geometry as well
as skin reflectance from just a single input image.
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