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(a) Guided Capture

(b) Multiplane Image (MPI)

(c) Rendering in VR

Figure 1: Overview of our system: (a) An AR app guides through the casual capturing process. (b) A neural network promotes a
subset of input viewpoints to multiplane images, from which we extract high-quality geometry per view for faster rendering,.
(c) Our scene representation can be rendered in real-time on desktop and VR. We provide results for several datasets.

ABSTRACT

Virtual reality (VR) would benefit from more end-to-end systems
centered around a casual capturing procedure, high-quality visual
results, and representations that are viewable on multiple platforms.
We present an end-to-end system that is designed for casual creation
of real-world VR content, using a smartphone. We use an AR app
to casually capture a linear light field of a real-world object by
recording a video sweep around the object. We predict multiplane
images for a subset of input viewpoints, from which we extract
high-quality textured geometry that are used for real-time image-
based rendering suitable for VR. The round-trip time of our system,
from guided capture to interactive display, is typically 1-2 minutes
per scene. See the submission video for a walkthrough and results.
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1 INTRODUCTION

Providing real-world VR experiences requires capture, reconstruc-
tion and representation of real scenes such that novel viewpoints
can be rendered in real-time. State-of-the-art visual results for meth-
ods assuming casual capture stages are achieved by either using
explicit geometry, e.g. per-view depth maps obtained from a smart-
phone’s dual camera [Hedman and Kopf 2018], or learned represen-
tations trained solely on posed images [Mildenhall et al. 2019].

Light fields emerged as a plenoptic approach for rendering 3D
scenes without the need of detailed modeling [Levoy and Hanrahan
1996]. Light fields directly encode the visual appearance of a scene
as seen from a densely sampled set of input views. Davis et al.
[2012] developed the first casual end-to-end approach based on
light fields that does not require any special hardware setup, such
as a gantry or a camera rig. The method relies on hundreds of
images to produce high-quality results. Hedman and Kopf [2018]
produce high-quality results, but using the dual camera has two
important limiting consequences: the capturing time increases, and
processing the depth maps into a multilayer mesh representation
is sophisticated and time-consuming. Mildenhall et al. [2019] use
multiplane images (MPIs; Zhou et al. [2018]) to create a light field
representation consisting of several local light fields associated to
the input viewpoints, which are blended together back-to-front to
synthesize novel viewpoints. The size of an MPI and its rendering
time both limit the representation from being used in VR.

We present a fast and casual end-to-end system for creating real-
world VR experiences while focusing on user-friendly capturing
paths, specifically 1D video sweeps. We predict MPIs for a subset of
input viewpoints from which we extract high-quality depth maps
that are used for a high-quality image-based rendering algorithm
suitable for VR. We demonstrate our interactive capture process
and show results of captured objects and scenes in the supplemental
video.
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2 SYSTEM OVERVIEW

Our system consists of three stages: capture, processing and ren-
dering. For capturing, we use a custom app on an iPhone 11, which
guides the user with augmented reality markers. The processing is
performed on a remote server with an NVIDIA TITAN RTX GPU,
which consumes the captured images and produces a scene repre-
sentation. The rendering runs on a VR-ready laptop with an Intel i7
CPU, 16 GB RAM and an NVIDIA GeForce RTX 2070 GPU. We built
two versions of the final viewer: an OpenGL-based viewer for di-
rectly visualizing results on a desktop or laptop, and a Unity-based
viewer for VR rendering using an Oculus Rift S headset.

Scene Representation. We represent the captured scene as a set of
multiplane images (MPIs). An MPI consists of D parallel planes with
RGB« textures [Zhou et al. 2018], as illustrated in Figure 1b. MPIs
can be considered as light fields with local partial geometry. This
representation has recently become popular in the computer vision
and graphics communities, as MPIs are particularly well-suited for
a deep-learning pipelines [Flynn et al. 2019; Mildenhall et al. 2019;
Srinivasan et al. 2019]. In practice, we use D = 64 layers.

2.1 Capture

We developed a custom iPhone app that guides the user along a ring-
like trajectory around an object of interest using augmented reality
markers. To keep our pipeline tractable in terms of bandwidth and
processing time, we sparsely sample input frames from a video
following the sampling theory presented by Mildenhall et al. [2019],
who proposed a bound for sampling views of a scene while still
reliably reconstructing the desired MPIs. We propose to capture 1D
video sweeps (ring-like trajectory) instead of a 2D grid of viewpoints
to keep the process itself as user-friendly and casual as possible.

2.2 Processing

Our processing consists of three main steps that convert the sam-
pled input views to RGBD images for efficient rendering: (1) we com-
pute camera poses using our own custom structure-from-motion
technique, (2) we predict an MPI for each sampled image using
a 3D CNN, (3) we compute depth maps from the predicted MPIs,
which are used in our rendering stage. For our SfM system, we
make assumptions about the capture trajectory which are used
for initialization and as priors to the bundle-adjustment problem.
We set the number of keypoints, iterations and other optimization
parameters needed to achieve acceptable results while keeping the
system as fast as possible. For predicting MPIs, we use Mildenhall
et al.’s pretrained network, which was mainly trained on synthetic
data, and fine-tune it on 100 real training examples to increase the
quality of MPIs for real scenes (see Figure 2). We compute depth
maps from MPIs using a weighted summation of the depth of each
layer, weighted by the MPT’s per-pixel « values.

2.3 Rendering

MPIs render views by re-projecting its layers into the novel view
and compositing them from back-to-front. If we want to render
views by blending contributions of N = 8 neighboring views (4 for
each eye), one single stereo-frame would require at least NxD = 512
render passes, which severely limits the rendering performance.
Instead, we use the depth maps extracted from the MPIs to create a
per-view geometry and render individual contributions from the
neighboring input views. For a given posed input view, we create a
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(a) RGB frame

(b) Mildenhall et al. (c) Fine-tuned model

Figure 2: Fine-tuning Mildenhall et al.’s MPI prediction net-
work (b) increases the accuracy of our depth maps (c).

dense triangulated mesh assigning a vertex to the center of each
pixel and back-projecting its depth to world space. For memory
efficiency, the geometry of each view is created at rendering time.
We reuse a vertex buffer object with vertices on a 2D grid while
depth is uploaded to a vertex buffer on demand. This rendering
approach produces rendering artifacts because some triangles will
be excessively stretched at depth discontinuities. To reduce this
effect during blending, we penalize the contribution of those regions
with the inverse of the area stretching factor (the amount that a
pixel gets stretched under re-projection). We compute the pixel
area stretching factor as the determinant of the Jacobian matrix of
texture coordinate. We also weight contributions by proximity to
the novel view, penalizing contributions from far-away input views.
We show a variety of results in our supplemental video.

3 CONCLUSION

We demonstrated a fast and reliable end-to-end system for casually
creating and displaying real-world VR experiences. We based our
work on two tightly connected principles: guided capturing of local
light fields. The guided capturing determines the efficiency of our
system and the representation gives us theoretical guarantees that
the final representation will perform sufficiently well, i.e. providing
sufficiently good MPIs for the given datasets for further generation
of per-view depth maps. The main limiting factors are all inher-
ited from rendering with explicit geometry, e.g. we see stretched
triangles from the mesh reconstruction if we move too far from
the input viewpoints. Note that our pipeline can be adjusted to the
requirements of different target platforms, e.g. by decreasing image
or depth map resolution to speed up transmission and rendering,
thus making interaction with our system more appealing.
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