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1. Overview
In this supplemental material, additional implementation details and experimental results are provided, including:

• More details about network architecture (Section 2);

• More details about shader implementation (Section 3);

• More ablation studies about threshold selection, the teacher model and the number of mesh layers. We also provide
another perspective to visualize and understand the proposed method (Section 4);

• Video demo. Please refer to our project page.

2. Network Architecture
We present the details of the two versions of our shading CNN in Table 1. To generate high-frequency textures and view-
dependent effects, we also leverage the positional encoding, which maps view direction and intersection locations into a
higher-dimensional space. For the CUDA version, both the position and view encoding dimensions are set to 10. For the
WebGL version, we set the dimension of view direction encoding to 5 and the others to 0. To ensure the CNN efficiency of the
CUDA version, we use depthwise separable convolution [2] to avoid expensive computations. We also tried to implement
depthwise separable convolution of WebGL version into the fragment shader but didn’t attain effective speedup.

Table 1. Detailed architecture of convolutional shading network.

Version Layer Kernel size / stride Channels Non-Linearity

CUDA
2DConv 3 × 3/(1,1) 256→ 256 ReLU

2DConv 3 × 3/(1,1) 256→ 256 ReLU

2DConv 1 × 1/(1,1) 256→ 3 Sigmoid

WebGL
2DConv 2 × 2/(1,1) 55→ 32 ReLU

2DConv 2 × 2/(1,1) 32→ 3 Sigmoid

3. Shader Implementation
Since the learnable features are attached on the mesh vertices, we directly generate the screen-space feature buffer using
traditional hardware rasterization. More specifically, we render 4 RGBA buffers for each mesh: 2 for 8-channel features,
1 for ray-surface intersection positions, and 1 for view directions. To implement the convolution operator in the same
framework, after optimizing the whole parameters using PyTorch, we import the 2-layer convolution weights into 2 RGBA
GL TEXTURE 2D with shape out channel × in channel thanks to the 2×2 spatial kernel. We employ two passes in
total to generate view-dependent RGB frames, one pass for each convolutional layer. In each pass, we only consider the
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Table 2. Quantitative comparisons on Synthetic-NeRF [3] Ficus data with different thresholds. Our approach significantly outperforms
single-surface based baselines.

10−4 5 × 10−4 10−3 5 × 10−3 10−2 Ours

PSNR ↑ 25.50 26.91 27.52 28.01 27.05 32.67
SSIM ↑ 0.921 0.936 0.941 0.944 0.935 0.975
LPIPS ↓ 0.088 0.073 0.068 0.063 0.069 0.024
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Figure 1. Qualitative comparisons on Synthetic-NeRF [3] Ficus data with different thresholds. The corresponding mesh is also
visualized in the top row. We observe that it is difficult to employ a single maching cubes surface to faithfully represent a NeRF.

radiance information of a local receptive field, which can be efficiently queried through texelFetch. To minimize the
memory footprint, we implement sin/cos positional encoding in the fragment shader of the first convolution layer rather
than in the rasterization step. We additionally tried to put the forward propagation of all CNN layers in one fragment shader,
but found the efficiency to be poor. There are also some well-known existing web-based deep learning frameworks like TF.js,
but we found they could not efficiently support the high-resolution synthesis.

4. Additional Ablation Studies
Results of Single Surface using Different Thresholds. In the main paper, we have conducted ablation studies on the
effectiveness of duplex radiance fields by using a single extracted mesh with a threshold 10−4. Here another interesting question
is, what will be the best performance if we adjust the threshold to get a better surface? Will this surpass the performance
of neural duplex radiance fields? To answer these questions, we conducted both quantitative and qualitative experiments
on NeRF-Synthetic Ficus data [3]. As shown in Table 2 and Figure 1, carefully fine-tuning the threshold will lead to some
performance improvements, but the rendering quality is still not acceptable due to the inaccurate geometry. In contrast, through
learning the aggregation of radiance features on two different coarse geometry surfaces, our method achieves significantly better
novel-view synthesis quality than all these variations. Please note the isolated parts of extracted mesh will be automatically
removed with respect to their diameters.

Results using Other Teacher Models. To prove the generalization ability of our method, we also conduct experiments
on learning neural duplex radiance fields from other NeRF models. More specifically, we train Instant-NGP [4] on the



Table 3. Quantitative comparisons using different teacher models. On Synthetic-NeRF [3] Chair data, we show our method have
generalization capabilities to different NeRF models.

TensoRF [1] Ours-TensoRF Instant-NGP [4] Ours-Instant-NGP

PSNR ↑ 34.73 34.08 34.30 34.17
SSIM ↑ 0.981 0.983 0.979 0.982
LPIPS ↓ 0.013 0.013 0.010 0.011

GT TensoRF [1] Ours-TensoRF Instant-NGP [4] Ours-Instant-NGP
Figure 2. Qualitative comparisons on Synthetic-NeRF [3] Chair data using different teacher models.
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Figure 3. Simultaneous visualization of extracted geometry normal map and corresponding rendering frame.

NeRF-Synthetic Chair scene [3] from scratch, extract the two geometry proxies using marching cubes with thresholds −1.5
and 5.5 (refer to Figure 3 for geometry visualization). To ensure the fairness of experiments, we leverage the same sampled
camera poses for distillation view synthesis as those used in the main paper, and the same configurations for optimizing neural
duplex radiance fields. We present both quantitative results and qualitative results in Table 3 and Figure 2, which effectively
demonstrate the generalizations of the neural duplex radiance fields.

Another Perspective to Understand Duplex Radiance Fields. To better understand the mechanism of the proposed neural
duplex radiance field and how it works, we simultaneously visualize the geometry and the rendering frame under different
thresholds from a pretrained Instant-NGP model [4] in Figure 3. We have several important observations: 1) Larger thresholds
will lead to an under-estimated mesh, which cannot cover the ground-truth surface, but include abundant geometric details. 2)



Table 4. Comparisons with different mesh layer settings. Time: Rasterization overheads of the CUDA version.
Threshold A1 B1 C1 Ours2 D3 E4 F4

5 × 10−5 ✓

1 × 10−4 ✓ ✓ ✓ ✓ ✓

5 × 10−4 ✓

1 × 10−3 ✓ ✓

5 × 10−3 ✓

1 × 10−2 ✓ ✓ ✓ ✓ ✓

5 × 10−2 ✓

PSNR ↑ 27.52 25.50 27.05 32.67 32.84 33.03 32.90
SSIM ↑ 0.941 0.921 0.935 0.975 0.976 0.977 0.976

LPIPS ↓ 0.068 0.088 0.069 0.024 0.022 0.021 0.022
Time (ms) ↓ 2.41 2.59 2.03 4.64 7.23 9.64 8.85

Smaller thresholds will lead to an over-estimated mesh with noise, but it can effectively wrap up the underlying true surface
and contains fewer holes. 3) The distribution of the geometries is spatially heterogeneous. For example, the triangle surfaces
extracted from threshold in the range [2.5,6.5] are not concurrently inside or outside of the scenes. In one mesh, some regions
may be covered and others may not. Hence, based on these observations, it will generally be unlikely that a single surface
extracted from a NeRF can represent the 3D scene without sacrificing rendering quality. In contrast, our proposed neural
duplex radiance field can effectively resolve these issues through learning the combination of two-layer duplex meshes while
achieving high-quality rendering.

Will more mesh layers lead to better results? As shown in Table 4, increasing the mesh layers can further increase
rendering quality, but the gain is minor compared to the improvement from a single mesh (‘A’/‘B’/‘C’) to our two-layer
duplex mesh (‘Ours’). Meanwhile, increasing the mesh layers will result in linear growth of memory footprint and rasterization
time, since the hardware rasterization cannot run in parallel for multiple meshes, which will negatively impact the real-time
application. Hence, our duplex radiance field provides the optimal trade-off between quality and speed.
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