
ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 1

Neural Feature Filtering for Faster
Structure-from-Motion Localisation
Alexandros Rotsidis1,2

a.rotsidis@cyens.org.cy

Wang Yuxin3

yuxin.wang@epfl.ch

Yiorgos Chrysanthou1

y.chrysanthou@cyens.org.cy

Christian Richardt2

christian@richardt.name

1 CYENS Centre of Excellence
Nicosia, Cyprus

2 University of Bath
Bath, UK

3 École polytechnique fédérale
de Lausanne, Switzerland

Abstract
Estimating a camera’s pose in an offline map, i.e. camera localisation, is an important
task for mobile applications such as augmented reality, self-driving cars and robotics.
Many camera localisation pipelines comprise stages for feature detection, matching, out-
lier filtering, and solving for the camera pose. The bottleneck in localisation pipelines
is typically feature matching, which becomes increasingly slower as more features are
considered. This work focuses on improving feature matching speed. Specifically, we
propose a neural filtering stage that reduces the number of features, drastically reduc-
ing feature matching time, with minimal loss in accuracy. This is achieved by training
a scene-specific neural network to estimate how reliable (or matchable) each detected
feature descriptor is. This allows us to efficiently select only the top most matchable
keypoints for the remaining pose estimation pipeline. Our method is applicable to any
existing structure-from-motion data. We evaluated our method on large indoor and out-
door datasets, and compare to two related methods that address the same problem. We
release code of our proposed method 1.

1 Introduction
Camera localisation is the process of estimating a 6 degree-of-freedom pose matrix for an
input image. This can be achieved in numerous ways; for example, a camera pose can be es-
timated by fetching the most similar image and using its associated pose from a database of
posed images [28]. Deep learning can also regress a pose directly from an image [11]. In this
paper, we focus on estimating the camera pose of a single input image against a structure-
from-motion (SfM) map, as structure-based camera localisation tends to provide the most
accurate results [29, 31]. These offline maps can be easily constructed by readily available
software, such as COLMAP [32]. Descriptor matching is an important necessary stage for
estimating the camera pose with respect to an offline map. In general, the process of register-
ing an image in an SfM map follows these steps: keypoints detection, keypoint description,

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1https://github.com/alexs7/Neural-Feature-Filtering-for-Faster-Structure-from-Motion-Localization-Code

Citation
Citation
{Sattler, Weyand, Leibe, and Kobbelt} 2012{}

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Sattler, Torii, Sivic, Pollefeys, Taira, Okutomi, and Pajdla} 2017

Citation
Citation
{Sattler, Zhou, Pollefeys, and Leal-Taixe} 2019

Citation
Citation
{Schönberger and Frahm} 2016

https://github.com/alexs7/Neural-Feature-Filtering-for-Faster-Structure-from-Motion-Localization-Code

2 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

Neural
Filtering

Feature
Matching

RANSAC
+ PnP
Solver

Camera
Rotation

and
Translation

[R|t]
=Feature

Extraction
SFM
Map

Matchable
features: 475

All features detected:
800

30%
faster

Figure 1: The proposed method augments a conventional pose estimation pipeline by adding
a neural filtering stage that can filter out non-matchable features detected from a query im-
age. The neural filtering stage can be easily plugged into existing pose estimation pipelines
to efficiently select the most reliable features from all detected features. This reduces the
number of features to be matched down to 30% on average (roughly 60% shown in the cur-
rent example) for all datasets tested and improves feature matching times by increasing its
speed while maintaining the final pose estimates.

feature matching (acquiring 2D–3D matches), outlier rejection using RANSAC [6] (or sim-
ilar), and lastly solving a perspective-n-point (PnP) problem returns the camera pose. This
pose estimation process typically includes two types of outlier filtering: (1) using Lowe’s
ratio test [4] after the feature matching stage, and (2) robustly fitting a pose matrix with
a progressive or random sample consensus method [4, 6], discarding any ‘outlier’ 2D–3D
matches that are not in the consensus set. In real-world scenarios, the thousands of keypoint
descriptors detected in an image, and the large offline maps with millions of points greatly
increase the computational cost of pose estimation. Each individual keypoint descriptor (n)
potentially has to be checked and matched to each 3D map point (m), leading to a worst-case
complexity of O(nm). Increasing the number of keypoint descriptors can also lead to more
outlier 2D–3D matches, which can increase RANSAC’s convergence time exponentially [6].

The question we ask in this paper is: can we determine before feature matching, which
descriptors are capable of being matched, thereby reducing the number of descriptors and
increasing the speed of feature matching, without loss of accuracy? The contribution is a
neural feature filtering method that can reduce the number of keypoint descriptors passed in
the pose estimation pipeline by classifying them into matchable, e.g. static points on perma-
nent structures such as buildings, retail shop shelves, or non-matchable, e.g. dynamic points
on cars and vegetation. The network prioritize a certain number of features that can be as
small as 30% of the original number of image keypoints’ features, and 18% in certain cases,
and can increase matching speed up to 30%, compared to existing methods. The neural net-
work is trained on live maps, based on work by Rotsidis et al. [22]. Static keypoints, e.g.
points on permanent structures such as buildings or retail shop shelves, tend to be more re-
peatable and thus useful in feature matching as they are more likely to be matched correctly.
Our approach can be utilized in existing SfM pipeline with negligible effort, that use live map
data from Rotsidis et al. [22]. The datasets we test our method on, are the CMU Extended
Seasons from Sattler et al. [30], Retail shop [22], and the LaMAR dataset [25]. We compare
to methods from Papadaki and Hansch [20], and Hartmann et al. [8].

2 Related Work
We start off by briefly introducing related work to keypoint detection and description. We
show how keypoint detection can be accelerated before we discuss existing keypoint reduc-
tion methods.

Citation
Citation
{Fischler and Bolles} 1981

Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Fischler and Bolles} 1981

Citation
Citation
{Fischler and Bolles} 1981

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Sarlin, Dusmanu, SchÃ¶nberger, Speciale, Gruber, Larsson, Miksik, and Pollefeys} 2022

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 3

Reducing descriptor size. One way to reduce computation and increase matching speed
is via compacting descriptors with PCA-SIFT [10], which uses PCA to reduce the dimen-
sions of the SIFT descriptor from 128 to 20, about one sixth of its original size. The number
of detected descriptors remains the same for an image. The reduced descriptor size can sig-
nificantly speed up individual comparisons, but for large sets of points it can still be slow
[8]. Our method works differently, as we reduce the number of descriptors, not their size.

Complexity reduction methods focus on speeding up the matching process, e.g. using
approximate nearest neighbors based on KD-trees [3, 17]. A vocabulary tree [19] can be
used for reducing matching time [2, 26, 27]. Agarwal et al. [2] and Sattler et al. [26, 27]
cluster feature descriptors into visual words and match image descriptors to the visual words.
Building a vocabulary tree adds time overhead similar to training the neural networks in our
proposed method. Both are a one-time preprocess only. Other approaches reduce the number
of images (instead of keypoints) passed in the pose estimation pipeline using clustering [7,
14] or by parallelizing the matching process [2]. For speeding up the last stage of a pose
estimation pipeline, the pose solver, alternatives to the P3P-based solver [16] have been
introduced, such as Lambda Twist [21] and work by Nakano [18].

Reducing keypoint numbers. Knopp et al. [13] estimate a confusion score per patch in
images using geographic information. This patch score is calculated by normalizing tentative
feature matches to images that are more than d meters away from the query image, by the
number of features detected in the patch. Descriptors detected from areas in an image with
high confusion scores, such as vegetation, are avoided, hence reducing the number of key-
points to work with. Learning-based methods aim to prune correspondences [24, 34, 37] for
more robust wide-baseline stereo matching (image-to-image matching), or point cloud ob-
ject classification [34]. Hartmann et al. [8] proposed a hard binary random-forest classifier
that is trained on structure-from-motion image pairs, and splits the keypoints from an image
into ‘matchable’ and ‘non-matchable’. Papadaki and Hansch [20] follow a similar approach,
also using a random forest.

3 Methodology
In this section, we describe the design and implementation of our neural feature filtering
method. We discuss the design and implementation choices we made given the available
data from a SfM map, and how we use the neural network output to classify descriptors.

SfM Map Information. At the bare minimum, a SfM map contains posed images and a
set of 3D points that those images observe. Each 3D point will have a list of descriptors
that belong to the images’ keypoints that it was observed from. A point cloud generated by
SfM holds enough information that can be used to train a classifier to predict if a point is
matchable or not. Most SfM software provides this information in an accessible format, such
as a database. COLMAP [32], for instance, provides a list of keypoint descriptors for each
image. Each keypoint is matched to a 3D point, or not if that keypoint was not triangulated.
For example, a keypoint detector may detect 500 keypoints in an image, but only 100 or so
may be triangulated to form 3D points when building a map, as matches need to satisfy a
number of criteria to be triangulated [32]. This leads to imbalanced data, i.e. more unmatched
keypoints than matched keypoints, as shown in Table 1, for each dataset. The image feature
descriptors that are not matched to any 3D point are considered noise. Similarly, at query
time, for localizing an image in the map, only a subset of the keypoint descriptors would

Citation
Citation
{Ke and Sukthankar} 2004

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Arya, Mount, Netanyahu, Silverman, and Wu} 1998

Citation
Citation
{Muja and Lowe} 2009

Citation
Citation
{Nister and Stewenius} 2006

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2011

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2012{}

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2011

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2012{}

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, etprotect unhbox voidb@x protect penalty @M {}al.} 2010

Citation
Citation
{Li, Wu, Zach, Lazebnik, and Frahm} 2008

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Lu} 2018

Citation
Citation
{Persson and Nordberg} 2018

Citation
Citation
{Nakano} 2019

Citation
Citation
{Knopp, Sivic, and Pajdla} 2010

Citation
Citation
{Sarlin, DeTone, Malisiewicz, and Rabinovich} 2020

Citation
Citation
{Sun, Jiang, Trulls, Tagliasacchi, and Yi} 2020

Citation
Citation
{Yi, Trulls, Ono, Lepetit, Salzmann, and Fua} 2018

Citation
Citation
{Sun, Jiang, Trulls, Tagliasacchi, and Yi} 2020

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Schönberger and Frahm} 2016

Citation
Citation
{Schönberger and Frahm} 2016

4 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

Table 1: Percentage of keypoints that can be matched to a 3D point, or not, per dataset.

Dataset Positive (%) Negative (%)

CMU [30] 30 70
LaMAR [25] 14 86
Retail shop [22] 60 40

match to 3D points in the map. We leverage this distilled information from the SfM map and
extract all the keypoints from the SfM database. We end up with a list of SIFT descriptors
[15] with their metadata, i.e. pixel location on the image, RGB value, SIFT metadata such
as octave, size, orientation, response and the number of dominant orientations Papadaki and
Hansch [20], as well as with a binary target value, either zero (not matched to a 3D point) or
one (matched to a 3D point).

Neural Feature Filtering Network. In this section, we describe the network architecture
of our Neural Filtering approach (NF), and discuss the custom cost function based on Wang
et al. [36]. The inputs to the neural network are the SIFT descriptor, x and y pixel location,
pixel RGB value, dominant orientations, size, response, octave, and orientation, totalling 138
features for the input vectors, one vector for each image keypoint. The neural network has
six layers consisting of an input layer of 138 nodes, three more layers of 276 nodes, one
layer of 138 nodes and the last output layer of one node. The activation functions in the
nodes are set to ReLU [1]. The last layer activation function is a sigmoid function defined as
f (x) = 1

1+e−x , because it produces continuous output values that are between 0 and 1, which
can be interpreted as the probability that the input belongs to the positive class.

We now describe the loss function used from Wang et al. [36] to alleviate the imbalanced
data problem that is shown in Table 1. Wang et al. start off by presenting a basic classifier
that minimises a mean squared error (MSE). Although it is effective for balanced datasets,
it is inadequate for handling imbalanced ones [36]. This is because MSE considers errors
in a global sense, where it computes the loss by summing up all errors across the entire
dataset, and subsequently taking the average. Wang et al. propose two cost functions called
“mean false error” (MFE) together with its improved version, the “mean squared false error”
(MSFE). We use the latter. The main difference between these adjusted cost functions and
MSE is that MFE and MSFE calculate the average error in each class separately and then
add them together. We list the MSE and MSFE functions:

MSE =
1
M

M

∑
i=1

∑
n

1
2
(d(i)

n − y(i)n)2 and (1)

MSFE =
1
2
((FPE +FNE)2 +(FPE −FNE)2), (2)

where FPE (false positive error) and FNE (false negative error) are defined as

FPE =
1
N

N

∑
i=1

∑
n

1
2
(d(i)

n − y(i)n)2 and (3)

FNE =
1
P

P

∑
i=1

∑
n

1
2
(d(i)

n − y(i)n)2. (4)

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Sarlin, Dusmanu, SchÃ¶nberger, Speciale, Gruber, Larsson, Miksik, and Pollefeys} 2022

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Lowe} 2004

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Wang, Liu, Wu, Cao, Meng, and Kennedy} 2016

Citation
Citation
{Agarap} 2018

Citation
Citation
{Wang, Liu, Wu, Cao, Meng, and Kennedy} 2016

Citation
Citation
{Wang, Liu, Wu, Cao, Meng, and Kennedy} 2016

ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 5

Table 2: The average balanced accuracy for the neural filtering proposed architecture (NF)
using the binary cross entropy loss function, and the one that uses the MSFE loss func-
tion [36]. NF (MSFE) outperforms in LaMAR and Retail Shop and returns equal balanced
accuracy for CMU compared to NF (BCE), using the binary cross entropy function.

Dataset Balanced Accuracy [%]

NF (BCE) NF (MSFE)

LaMAR [25] 58% 71%
Retail shop [22] 63% 63%
CMU [30] 65% 67%

The term n is the number of classes in our case n = 2, M is the number of all samples, N
and P are the numbers of negative and positive ground-truth samples, respectively, which are
already known before training. The term d(i)

n is the ground-truth value of the i-th sample’s
class, and y(i)n is the predicted value of the same sample. Since n = 2, a simplified example is:
d(5) = [0,1], i.e. sample number 5 belongs to the second class, and it is predicted that sample
number 5, y(5) = [1,0] belongs to the first class. Another popular cost function used for binary
classification problems is the binary cross-entropy loss (BCE) [23]. We choose the network
that uses the MSFE loss function to compare to Papadaki and Hansch [20] and Hartmann
et al. [8]. In Table 2, we show that the networks using the MSFE function [36] return a
higher balanced accuracy than the same networks trained with the binary cross-entropy loss
function, for all datasets. More details about the datasets in Section 4.

The proposed neural network is trained using Adam [12] for 1,000 epochs with a batch
size of 4,096 feature vectors, SIFT and the metadata. and a learning rate of 0.0001. The
CMU slices training data is, on average, 2 million rows across all slices. The LaMAR average
number of training data vectors for HGE, CAB, and LIN is 16 million rows. The retail shop’s
training data is 3 million rows. In total, one network is trained for the retail shop, three for
LaMAR, and 24 for CMU (one for each slice).

4 Experiments and Evaluation
In this section, we evaluate the proposed neural filtering method (NF), work from Hartmann
et al. [8] (PM) and Papadaki and Hansch [20] (MnM). We briefly describe the datasets and
metrics used, including an additional metric for this proposed work.

Datasets. We use the Retail shop dataset from Rotsidis et al. [22], and all the slices from the
CMU Extended Seasons [30]. In addition to the CMU dataset and the retail shop dataset, we
also used the LaMAR dataset [25]. We construct live maps using from all datasets following
the same method as Rotsidis et al. [22]. Each dataset contains data captures over time of the
same places, i.e. sessions. We set aside one session to use as a query session. We use the
remaining sessions as additional sessions to create the live map [22], on top of the base map.
All poses are in metric space.

Comparison Methods. Papadaki and Hansch [20] and Hartmann et al. [8] base their meth-
ods on a hard binary classifier model. A hard classifier is a model that makes definitive binary

Citation
Citation
{Wang, Liu, Wu, Cao, Meng, and Kennedy} 2016

Citation
Citation
{Sarlin, Dusmanu, SchÃ¶nberger, Speciale, Gruber, Larsson, Miksik, and Pollefeys} 2022

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Ruby and Yendapalli} 2020

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Wang, Liu, Wu, Cao, Meng, and Kennedy} 2016

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Sarlin, Dusmanu, SchÃ¶nberger, Speciale, Gruber, Larsson, Miksik, and Pollefeys} 2022

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Rotsidis, Lutteroth, Hall, and Richardt} 2021

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

6 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

decisions about the class membership of a given input. We replicate their training methods
and data acquisition methods. For the rest of the paper, we will use the following acronyms
for our proposed method, Neural Filtering which uses the MSFE loss function (NF), and for
the comparison methods, Hartmann et al. [8]’s, Predicting Matchability (PM), and Papadaki
and Hansch [20], Match or No Match (MnM). For each dataset, we test one query set of im-
ages, using all three methods. We let each method decide which keypoints are matchable and
which ones are not, from the detected query image keypoints. Each time we run the query
images through the pose estimation pipeline, we report a number of metrics.

Metrics. We now describe the metrics we used and present the results. Mean Rotation and
Translation Errors: There is no straightforward procedure to combine translation and rota-
tion errors in a single combined metric. we measure the accuracy of poses similar to Sattler
et al. [30]. The position error is computed as the Euclidean distance between the estimated
and ground-truth camera centres,

∥∥Cest −Cgt
∥∥

2. The values are in metric. The absolute orien-
tation error is calculated from the estimated rotation matrix Rest and the ground-truth rotation
matrix Rgt exactly as in Sattler et al. [30]. Mean Average Accuracy (mAA): The mean errors
can be misleading in cases where the results returned deviate in a significant degree. For
example, a method can fail with high error numbers 49% of the time and simultaneously
performs well 51% of the time with low error numbers; then the mean errors can give a
false impression of perfectness. The research community now focuses on threshold-based
metrics proposed in work from Jin et al. [9]. For each dataset, we use ten specific thresholds
as suggested by Jin et al. [9]. The thresholds we used are, for CMU: one to 10 degrees for
rotation and 0.2 meters to 5.5 meters for translation.. For Retail Shop: 0.5 degrees for rota-
tion and one to 5 centimeters for translation. Similarly for LaMAR: one to five degrees and
0.1 meters to 0.5 meters. The mAA metric is calculated using the camera pose errors, i.e. the
Euclidean distance for translation. The rotation error for mAA is calculated using the angle
between the poses’ quaternions p,q [9, 37]. A pose is added (or accepted) only if its rotation
and translation error parts are within a threshold out of the ten thresholds. Once this process
is repeated for all poses, the number of poses that fall into the thresholds is returned as a
percentage value (the higher the better).

4.1 Results
We start by reporting average metrics across all datasets, and then we examine each dataset
separately. Table 3 show the averaged results for CMU (24 slices), LaMAR (3 sub-datasets),
and the retail shop. Since the retail shop consists of one dataset, we just report its errors, there
is nothing to average. The translation is reported in centimetres (cm) for the retail shop, as
the map spans four/five meters, a small shop aisle. The CMU and LaMAR span hundreds of
meters, and CAB from LaMAR is also a multi-story map.

CMU Results. From Table 3, MnM returns the highest mAA for the CMU mAA = 98.99%,
followed by NF, mAA = 98.54%. At the same time, our proposed method, NF, is almost twice
as faster as the MnM, i.e. feature matching time is 66m on average for each query image (NF)
but 104ms for (MnM). The method PM, although even faster than NF, the mAA is lower at
86.51%, and returns the highest average translation and rotation errors compared to NF and
MnM for CMU. The task of our proposed method is to balance the reduction of keypoints (or
features) while keeping low camera pose errors. NF reduces the keypoints by a further 33%,

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Papadaki and Hansch} 2020

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018

Citation
Citation
{Jin, Mishkin, Mishchuk, Matas, Fua, Yi, and Trulls} 2021

Citation
Citation
{Jin, Mishkin, Mishchuk, Matas, Fua, Yi, and Trulls} 2021

Citation
Citation
{Jin, Mishkin, Mishchuk, Matas, Fua, Yi, and Trulls} 2021

Citation
Citation
{Yi, Trulls, Ono, Lepetit, Salzmann, and Fua} 2018

ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 7

Table 3: Mean metrics for each dataset. For CMU and LaMaR, we report the translation error
in metres (m), and for the retail shop in centimetres (cm). Our neural filtering method (NF)
returns that highest feature keypoints reductions, which leads to faster feature matching, and
also does not deteriorate the pose errors, unlike PM which returns high reductions but also
high errors.

Dataset CMU LaMAR Retail shop

Method MnM NF PM MnM NF PM MnM NF PM

T. Er. [m/cm] 0.59 1.30 12.13 2.58 2.65 19.27 0.52 0.54 1.52
Rot. Er. [°] 0.38 0.34 10.23 2.20 2.44 41.73 0.29 0.30 0.69
Feat. Red. [%] 37.64 70.73 93.06 49.91 66.92 99.33 26.39 49.92 91.58
F.M. Time (ms) 104 66 19 2,254 1,703 45 1,020 754 142
mAA [%] 98.99 98.54 86.51 96.21 95.36 41.87 97.91 97.94 82.74

hence is faster, compared to MnM, while keeping almost the same accuracy. PM is faster
than NF and MnM but fails to keep the pose errors low. Adhering to this line of reasoning,
it would be unjustifiable to select the optimal technique based solely on the mean average
accuracy (mAA), since the objective of this paper is not only to minimise pose estimation
errors but also to reduce the feature matching time. Hence why we did not bold a single
value in Table 3. In Table 4, we emphasise the mAA, feature matching time (F.M. time) and
keypoint reduction percentage, for each CMU slice. Table 4, shows in bold the percentage of
keypoints reduction only if the mAA for that slice is higher than the other two methods PM
and MnM. The proposed method outperforms the comparison methods in 11 out of 24 CMU
slices. PM outperforms NF and MnM in only one slice, i.e. CMU slice 2, being the fastest
and returning a mAA increase of only 0.34%. It is worth noting that in CMU slice 19, NF
filters out 82.47% of the keypoints, which is 58.56% more than the second-best performing
method MnM, while returning a higher mAA.

LaMAR Results. The fastest method is PM, but also returns the lowest mAA, at 41.87%.
From Table 3, NF is faster than MnM, at 1,703 milliseconds (ms) average feature matching
time, 551 milliseconds faster than MnM. NF maintains low pose estimation errors and a
mAA of 95.36%. MnM returns the higher mAA by only 0.85%, but it’s 551ms slower. PM
returns the fastest time at only 45ms average feature matching time but returns the lowest
mAA, at 41.87%. In Table 5 and Table 6 we show the results for LaMAR for each method,
and for each sub-dataset, LIN, CAB, HGE. The tables show that the method from Hartmann
et al. [8], PM, struggles to learn the imbalanced dataset distribution of LaMAR, compared to
the NF and MnM methods. Hartmann et al. [8] define their own method to get the training
data and it does not account for the low number of positive examples and the high number of
negative samples. The training data for PM (in LaMAR), consisted of 14% positive samples
and negative 86% samples. To examine further why PM returns a lower mAA than NF and
MnM we pick a random frame from LIN shown in Fig. 2. In Fig. 2, in the PM frame, the
points that are matchable and true positives are drastically reduced compared to the other
methods, NF and MnM. A low number of points are not desirable for pose estimation and
can lead to poses with high errors [38]. Points should be spread homogeneously across the
camera frame for more accurate pose estimation [5].

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Zheng, Kuang, Sugimoto, Astrom, and Okutomi} 2013

Citation
Citation
{DemirtaÅ�, GÃ¼lmez, YÄ±ldÄ±rÄ±m, LeloÄ�lu, Yaman, and GÃ¼neyi} 2019

8 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

Table 4: In this table, we show only the keypoint reduction percentage, feature matching time
(F.M time) and, mAA, for all CMU slices. We bold the keypoint reduction percentages of
NF that return an equal or higher mAA than the PM and MnM.

Keypoint Reduction[%] F.M Time[ms] MAA[%]

Method MnM NF PM MnM NF PM MnM NF PM

slice2 37.57 59.88 84.69 129 99 39 99.14 99.14 99.48
slice3 29.74 54.83 86.24 292 214 71 99.92 99.92 99.81
slice4 37.85 54.95 79.26 148 126 58 100.00 100.00 99.29
slice5 56.43 86.42 96.64 16 6 2 99.33 98.44 88.00
slice6 38.85 60.22 95.86 253 191 21 100.00 100.00 96.98
slice7 31.17 74.71 81.56 201 90 67 100.00 99.94 99.20
slice8 31.16 63.73 86.41 171 109 42 99.88 99.81 98.38
slice9 43.27 75.43 96.13 59 30 5 99.23 99.23 81.64
slice10 26.45 61.72 94.33 125 79 12 99.92 99.92 99.08
slice11 38.47 66.78 96.12 127 86 10 97.24 96.72 89.83
slice12 33.15 70.25 97.97 123 68 6 100.00 100.00 72.57
slice13 33.71 65.78 96.24 115 75 9 98.25 98.25 90.79
slice14 46.96 86.32 98.61 44 13 2 98.61 98.33 52.89
slice15 47.50 72.08 95.84 73 47 8 99.44 98.89 84.00
slice16 35.89 62.90 87.02 150 104 37 99.50 99.63 98.94
slice17 43.87 65.87 92.39 57 41 10 99.38 99.22 99.06
slice18 42.98 63.66 95.08 34 24 4 100.00 100.00 99.05
slice19 23.91 82.47 98.25 62 17 2 97.41 99.44 76.74
slice20 36.03 82.71 98.69 19 6 1 99.38 99.03 65.51
slice21 27.68 65.01 90.95 116 68 19 99.81 99.74 91.68
slice22 30.29 81.25 96.90 26 8 2 99.00 98.55 60.98
slice23 53.58 93.46 99.38 7 1 0 91.94 82.22 70.00
slice24 36.66 75.43 97.74 43 20 2 99.78 100.00 78.67
slice25 40.28 71.59 91.13 105 61 19 98.62 98.50 83.69

Table 5: The table shows the error metrics for the LaMAR LIN and CAB dataset.

Dataset LaMAR LIN LaMAR CAB

Method MnM NF PM MnM NF PM

T. Er. [m] 0.03 0.03 23.03 1.99 0.81 16.23
Rot. Er. [°] 0.11 0.12 25.85 2.63 2.43 30.11
Feat. Red. [%] 56.98 65.69 99.35 51.64 73.13 98.97
F.M. Time (ms) 3,026 2,631 64 1,034 632 36
mAA [%] 98.49 98.36 56.56 95.50 94.12 47.91

Retail Shop Results. NF returns the highest mAA at 97.94% followed by MnM, which
returns an mAA of 97.91%. NF is also faster than MnM by 26%, as it filters out 23.53%
more keypoints than MnM. NF is the best-performing method overall for the retail shop
dataset. PM follows the same trend as in the CMU and the LaMAR dataset, i.e. it discards
too many true positive samples and returns the lowest mAA and highest average translation

ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 9

Table 6: The table shows the error metrics for the LaMAR HGE dataset and Retail Shop.
The translation error for the Retail shop is reported in centimeters, ‘cm’.

Dataset LaMAR HGE Retail Shop

Method MnM NF PM MnM NF PM

T. Er. [m/cm] 5.72 7.10 18.54 0.01 0.01 0.02
Rot. Er. [°] 3.86 4.76 69.22 0.29 0.30 0.69
Feat. Red. [%] 41.10 61.94 99.67 26.39 49.92 91.58
F.M. Time (ms) 2,701 1,844 33 1,020 754 142
mAA [%] 94.64 93.60 21.13 97.91 97.94 82.74

Figure 2: A random frame from LaMAR LIN, and the predictions non-matchable (red), and
matchable (green). For the ground truth, the green points are the keypoints that have a 3D
point matched in the live map, red if not. An area of interest is highlighted in yellow. MnM
fails to detect the leaves in the top left corner as non-matchable compared to NF, which
discards more points on leaves. PM fails to perform adequately and returns only a small
number of points on the building.

and rotation errors compared to MnM and NF. Even though PM is the fastest from NF and
MnM, its mAA is close to 15% lower than NF and MnM. In Table 5 and Table 6 we do not
bold any values but we show that NF reduces keypoints by a higher margin while keeping
mAA high, compared to MnM and PM.

5 Conclusion and Future Work
In this paper, we proposed and evaluated a single neural network architecture to speed up
feature matching by discarding superfluous features before they are matched to an existing
map. We showed that taking into consideration the imbalanced data nature of the problem,
we can achieve a better balance between feature matching speed and pose estimation errors
compared to existing methods. Our results show that neural networks when adapted for the
imbalanced data, are a promising option for efficiently filtering out unmatchable image de-
scriptors, which can significantly reduce downstream computation time. The experiments
show that keypoints can be reduced up to 80% (in CMU slice 19) and feature matching time
almost down to half while keeping the pose error minimal compared to other methods. We
believe that more dynamic keypoints can be discarded while keeping the pose errors minimal
if additional metadata can be added to the training data, e.g. semantic information [33, 35].

Citation
Citation
{Stenborg, Toft, and Hammarstrand} 2018

Citation
Citation
{Toft, Stenborg, Hammarstrand, Brynte, Pollefeys, Sattler, and Kahl} 2018

10 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

References
[1] Abien Fred Agarap. Deep learning using rectified linear units (ReLU).

arXiv:1803.08375, 2018.

[2] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski.
Building Rome in a day. In ICCV, pages 72–79, 2009. doi: 10.1109/ICCV.2009.
5459148.

[3] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM (JACM), 45(6):891–923, 1998.

[4] Ondrej Chum and Jiri Matas. Matching with PROSAC – Progressive sample consensus.
In CVPR, 2005.

[5] Fatih Demirtaş, Baran Gülmez, İrem Yıldırım, Uğur Murat Leloğlu, Mustafa Yaman,
and Eylem Tuğçe Güneyi. Investigation of the effects of false matches and distribution
of the matched keypoints on the pnp algorithm. In Turkish National Photogrammetry
and Remote Sensing Union Technical Symposium (TUFUAB), 2019.

[6] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, June 1981. doi: 10.1145/358669.358692.

[7] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson, Rahul Raguram,
Changchang Wu, Yi-Hung Jen, Enrique Dunn, Brian Clipp, Svetlana Lazebnik, et al.
Building Rome on a cloudless day. In ECCV, pages 368–381, 2010.

[8] Wilfried Hartmann, Michal Havlena, and Konrad Schindler. Predicting matchability.
In CVPR, pages 9–16, 2014.

[9] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo
Yi, and Eduard Trulls. Image matching across wide baselines: From paper to practice.
International Journal of Computer Vision, 129(2):517–547, 2021.

[10] Yan Ke and Rahul Sukthankar. PCA-SIFT: A more distinctive representation for local
image descriptors. In CVPR, 2004.

[11] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A convolutional net-
work for real-time 6-DOF camera relocalization. In ICCV, 2015.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR, 2015.

[13] Jan Knopp, Josef Sivic, and Tomas Pajdla. Avoiding confusing features in place recog-
nition. In ECCV, pages 748–761, 2010.

[14] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-Michael
Frahm. Modeling and recognition of landmark image collections using iconic scene
graphs. In ECCV, pages 427–440, 2008.

https://arxiv.org/abs/1803.08375

ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION 11

[15] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, November 2004. doi: 10.1023/B:
VISI.0000029664.99615.94.

[16] Xiao Xin Lu. A review of solutions for perspective-n-point problem in camera pose
estimation. Journal of Physics: Conference Series, 1087:052009, September 2018.
doi: 10.1088/1742-6596/1087/5/052009.

[17] Marius Muja and David G Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[18] Gaku Nakano. A simple direct solution to the perspective-three-point problem. In
BMVC, 2019.

[19] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR,
volume 2, pages 2161–2168, 2006. doi: 10.1109/CVPR.2006.264.

[20] Alexandra I. Papadaki and Ronny Hansch. Match or no match: Keypoint filtering based
on matching probability. In CVPR Workshops, pages 1014–1015, 2020.

[21] Mikael Persson and Klas Nordberg. Lambda Twist: An accurate fast robust perspective
three point (P3P) solver. In ECCV, pages 318–332, 2018.

[22] Alexandros Rotsidis, Christof Lutteroth, Peter Hall, and Christian Richardt. ExMaps:
Long-term localization in dynamic scenes using exponential decay. In WACV, pages
2867–2876, January 2021.

[23] Usha Ruby and Vamsidhar Yendapalli. Binary cross entropy with deep learning tech-
nique for image classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10), 2020.

[24] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
SuperGlue: Learning feature matching with graph neural networks. In CVPR, pages
4938–4947, 2020.

[25] Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L. Schönberger, Pablo Speciale, Lukas
Gruber, Viktor Larsson, Ondrej Miksik, and Marc Pollefeys. LaMAR: Benchmarking
localization and mapping for augmented reality. In ECCV, 2022.

[26] Thorsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization using
direct 2D-to-3D matching. In ICCV, 2011.

[27] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving image-based localization
by active correspondence search. In ECCV, pages 752–765, 2012.

[28] Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif Kobbelt. Image retrieval for
image-based localization revisited. In BMVC, 2012. doi: 10.5244/C.26.76.

[29] Torsten Sattler, Akihiko Torii, Josef Sivic, Marc Pollefeys, Hajime Taira, Masatoshi
Okutomi, and Tomas Pajdla. Are large-scale 3D models really necessary for accurate
visual localization? In CVPR, 2017. doi: 10.1109/CVPR.2017.654.

12 ROTSIDIS ET AL.: NEURAL FEATURE FILTERING FOR FASTER SFM LOCALISATION

[30] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik Sten-
borg, Daniel Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and
Tomas Pajdla. Benchmarking 6DOF outdoor visual localization in changing conditions.
In CVPR, 2018.

[31] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixe. Understanding the
limitations of CNN-based absolute camera pose regression. In CVPR, June 2019.

[32] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited.
In CVPR, 2016.

[33] Erik Stenborg, Carl Toft, and L. Hammarstrand. Long-term visual localization using
semantically segmented images. ICRA, pages 6484–6490, 2018.

[34] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi, and Kwang Moo Yi.
ACNe: Attentive context normalization for robust permutation-equivariant learning. In
CVPR, pages 11286–11295, 2020.

[35] Carl Toft, Erik Stenborg, Lars Hammarstrand, Lucas Brynte, Marc Pollefeys, Torsten
Sattler, and Fredrik Kahl. Semantic match consistency for long-term visual localiza-
tion. In ECCV, 2018.

[36] Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J Kennedy.
Training deep neural networks on imbalanced data sets. In International Joint Confer-
ence on Neural Networks, pages 4368–4374, 2016.

[37] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit, Mathieu Salzmann, and
Pascal Fua. Learning to find good correspondences. In CVPR, pages 2666–2674,
2018.

[38] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom, and Masatoshi Oku-
tomi. Revisiting the PnP problem: A fast, general and optimal solution. In ICCV,
2013.

