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Fig. 1. We propose a novel image-based representation to generate novel views with head-motion parallax for a 360° scene: (a) When
a viewer changes the orientation and position, correct novel views are presented. (b, c) The original stereo views. (d, e) The novel
stereo views. Notice that the positional relationship between the bench and the trees changes according to the head motion.

Abstract—We propose a novel 360° scene representation for converting real scenes into stereoscopic 3D virtual reality content with
head-motion parallax. Our image-based scene representation enables efficient synthesis of novel views with six degrees-of-freedom
(6-DoF) by fusing motion fields at two scales: (1) disparity motion fields carry implicit depth information and are robustly estimated from
multiple laterally displaced auxiliary viewpoints, and (2) pairwise motion fields enable real-time flow-based blending, which improves
the visual fidelity of results by minimizing ghosting and view transition artifacts. Based on our scene representation, we present an
end-to-end system that captures real scenes with a robotic camera arm, processes the recorded data, and finally renders the scene in
a head-mounted display in real time (more than 40 Hz). Our approach is the first to support head-motion parallax when viewing real
360° scenes. We demonstrate compelling results that illustrate the enhanced visual experience – and hence sense of immersion –
achieved with our approach compared to widely-used stereoscopic panoramas.

Index Terms—360° scene capture, scene representation, head-motion parallax, 6 degrees-of-freedom (6-DoF), image-based rendering

1 INTRODUCTION

Experiencing virtual reality (VR) has become increasingly easy in
recent years thanks to the availability of commodity head-mounted
displays (HMDs). However, good VR content is still scarce and might
become a bottleneck for VR technology. Currently, most VR content is
computer-generated from virtual 3D scenes, which are tedious to model
and animate, and therefore often lack the realism of real scenes. On
the other hand, capturing real scenes and converting them into highly
realistic VR content is a promising avenue for creating visually rich VR
content. Many applications, such as virtual tourism, teleconferencing,
film and television production would benefit from such VR content that
is captured from the real world.

The most common representations for 360° VR content of real scenes
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are panoramas (360° images) and stereo panoramas. Panoramas can
be easily obtained by stitching multiple images [41], but they do not
carry any 3D information of the scene. Stereo panoramas, on the other
hand, contain parallax (or disparity) [31, 39]. However, as all the scene
information is represented by two panoramas with a fixed parallax,
head-motion parallax – where the occlusion relationship changes with
the viewpoint – cannot be generated by stereo panoramas, as it requires
a different parallax corresponding to different head positions. One
potential solution for full 3D perception for arbitrary viewpoints is to
reconstruct the complete 3D geometry of the scene. However, this is
very difficult to achieve for arbitrary real scenes, as real scenes are
generally large and complex, while the viewpoints for recording are
usually restricted to a small region.

We propose a novel image-based representation for modeling a 3D
360° scene using implicit depth information (see Figure 1). The core
of our representation builds on two-scale motion fields, disparity and
pairwise motion fields, which extract 3D information of the scene and
improve the rendering quality and performance. Using our representa-
tion, we do not require a dense light-field sampling with huge recording
and storage cost, but only 72×8 images with the two-scale motion field-
s. In addition, our representation enables real-time viewpoint synthesis
and smooth viewpoint transitions without requiring explicit 3D scene
geometry. Our approach makes the following contributions:

• A novel image-based representation for 360° real scenes. Based
on this representation, we propose an end-to-end system that
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Fig. 2. Illustration of our 360° scene representation: (a) Key frames are captured uniformly on the surface of a sphere (orange circles). (b) The local
region on the sphere is remapped into the 2D latitude-longitude plane. (c) The three types of information stored in our representation: (1) key frames
(bordered in orange), (2) disparity motion fields (the curves fitted to the colored motion vectors), and (3) pairwise motion fields (the color-coded flow
fields between adjacent key frames).

ranges from recording to rendering of real scenes. The results
show that our system enables head-motion parallax, which is
missing from existing panorama-based approaches.

• A robust curve-based fitting method for estimating disparity mo-
tion fields, which implicitly conveys depth information for a
viewpoint. Disparity motion fields are estimated more robustly
compared to traditional stereo matching-based depth estimation.

• Novel-view synthesis with real-time flow-based blending between
synthesized images from different viewpoints produces smooth
viewpoint transitions with minimal visual artifacts. By combining
disparity and pairwise motion fields on the fly, we avoid costly
online motion estimation and achieve real-time rendering.

2 RELATED WORK

Image-Based Scene Modeling A 3D scene can be modeled with dif-
ferent forms of information,and visualized with different image-based
rendering techniques [37]. On the one hand, scenes can be represented
purely with images and without any geometric information, using a
light field [24] or lumigraph [13]. Even though techniques in this cate-
gory are highly developed [23,25,27,36,47], they still require extremely
densely sampled images of a scene, which is impractical for a 360°
scene. To more efficiently represent a scene, image-based rendering
uses sparsely sampled images with different forms of depth informa-
tion, such as the unstructured lumigraph [5] that generalizes light-field
techniques. Using depth for synthesizing novel viewpoints has been
shown to produce increasingly high-quality results [6, 7, 10, 12, 15, 42].
However, as these depth-based techniques are not designed for 360°
scenes, it is unclear how to sample an entire 360° scene to guarantee
both a small baseline between images (which is desirable for view syn-
thesis) and an efficient representation with a low sampling density of
images. Huang et al. [16] use dense scene reconstruction to create VR
videos with head-motion parallax from a single 360° video. However,
geometry-based image warping limits the visual quality of results, as
straight lines are bending, and occlusions lead to stretching artifacts, as
the viewer moves away from the capture viewpoint.
3D Scene Reconstruction On the other hand, a virtual 3D scene can
be very efficiently rendered if it is available in the form of textured
geometry. PMVS [11] is widely used for reconstructing 3D models of
real scenes from multi-view input images. Using depth sensors, larger,
mostly indoor, scenes can also be reconstructed [2, 29, 30, 43, 46], but
with a relatively long capturing process. Besides static scenes, dynamic
objects are also able to be reconstructed with multiview input [8, 9]
or single-view input [18, 28]. Hedman et al. [14] reconstruct textured
geometry from casually captured input photos, but their approach can-
not handle view-dependent effects. However, current 3D reconstruction
techniques are still not able to handle large outdoor scenes, due to
the lack of ability to reconstruct distant objects and the difficulty of
achieving multi-view coverage of all objects in a scene.

Panoramas Currently, the most convenient way to visualize a real
360° scene within a head-mounted display is to use a panorama (or
360° video), which is created by aligning and stitching multiple images
(or videos) corresponding to different viewing directions. Panorama
stitching techniques are widely covered in the literature [4, 33, 41]. For
generating panoramas, Zelnik-Manor et al. [45] project the images onto
a sphere to represent the 360° scene. Kopf et al. [20] propose locally-
adapted projections to reduce distortions in the generated panoramas.
Optical flow is also used to minimize undesired motion parallax in
synthesizing panoramas [40], as it compensates motions in the scene.
Also based on optical flow, Kang et al. [19] propose multi-perspective
plane sweeping to seamlessly stitch images. Perazzi et al. [32] stitch
panoramic videos from unstructured camera arrays by removing paral-
lax with local warps. We also use flow-based blending to seamlessly
align and fuse multiple synthesized images into a single coherent image.
Recently, Lee et al. [22] used a deformed sphere to perform spherical
projection, and a non-uniform sampling to represent important regions
in a scene with higher resolution.
Stereo Panoramas Stereo panoramas are a better representation for
360° scenes than a single panorama, as the latter do not provide any 3D
information. Stereo panoramas can be generated by moving a camera
along a circular trajectory with radial [31] or tangential [38] viewing di-
rection, and stitching vertical stripes from the images. At the same time,
the depth of a panorama can also be estimated, and thus stereo vision
can be achieved [39]. Recently, Richardt et al. [35] proposed a practical
solution for creating high-quality stereo panoramas by stabilizing and
correcting input images, and seamless stitching them using flow-based
ray upsampling. Custom multi-camera rigs also enable capture of stereo
video panorama to represent dynamic scenes [1, 26]. However, tech-
niques based on stereo panoramas assume that the viewer only rotates
around a vertical axis between the two eyes, and thus stereo vision is
limited to a fixed viewpoint with varying view directions, but without
head-motion parallax.

Light fields have also been used for stitching panoramas [3] and
estimating depth maps [21] of 360° scenes. Our 360° scene representa-
tion overcomes these limitations by using image-based rendering with
multiple key frames, leading to results of higher visual quality.

3 PARALLAX360 SCENE REPRESENTATION

Our 360° scene representation consists of three types of information
(illustrated in Figure 2):

1. key frames that represent the color information of the scene,

2. disparity motion fields that represent implicit 3D information of
the scene at each key frame, and

3. pairwise motion fields for efficient and smooth viewpoint transi-
tions in novel-view synthesis.

Disparity and pairwise motion fields form our two-scale motion fields.
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Fig. 3. Our capture scheme: (a) Key frames on the sampling sphere, as
orange points. (b) The sampling circle of relative frames (blue points)
around one key frame. (c) One key frame Ik (bordered in orange), and
its six relative frames (bordered in blue).

Key Frames To capture a complete scene in 360°, we sample discrete
positions uniformly in latitude and longitude on a sphere (called the
‘sampling sphere’), and record key frame images at these positions
looking radially outward (see Figure 2a,b). In all our experiments, we
capture key frames at uniform angular increments of 5° in both latitude
and longitude on a sphere with a diameter of 1.25 m.

Disparity Motion Fields While a key frame describes the visual in-
formation of one specific viewpoint, the disparity motion field conveys
its implicit depth information. Specifically, the disparity represents the
motion between a point and its corresponding points in images from
surrounding viewpoints. For this, we extend the common case of binoc-
ular disparity in stereo matching to multiple viewpoints surrounding
one key frame. We estimate the motion vectors for six surrounding
images for each key frame, and represent the motion vectors using
curves, as illustrated in Figure 2c, for more robust motion estimation
and efficient computation during view synthesis. Given the key frames,
the curve-based disparity motion fields can be used to synthesize nearby
viewpoints, similar to depth information used for view synthesis.

Our curve-based representation has three advantages over explicit
depth maps. First, it does not require camera calibration which is nor-
mally necessary for depth estimation with stereo matching. Second, the
curve is fitted to multiple motion vectors, and is thus more robust to
errors in the motion estimation. Third, our representation is redundant
compared with explicit depth maps, which is useful for synthesizing
novel viewpoints in different directions. We discuss the computation of
disparity motion fields in Section 4.2, and their usage in Section 4.3.1.

Pairwise Motion Fields Given a key frame and its disparity motion
field, we can render novel viewpoints near the position of the key frame.
However, if the viewpoint moves from one key frame to another, the
sudden switch between key frames will generate noticeable popping ar-
tifacts. To solve this problem, and achieve a smooth transition between
key frames, the flow fields between their respective results are required
to synthesize a smooth interpolation. In our approach, we precompute
the optical flow between pairs of adjacent key frames, and calculate
the blending motion fields online using simple flow arithmetic. This
avoids expensive online optical flow estimation, and ensures real-time
performance. The pairwise motion fields are visualized in Figure 2c,
and we describe their usage in Section 4.3.

4 METHOD

The pipeline of our end-to-end system comprises three steps: image
capture, motion field precomputation and novel-view synthesis.

4.1 360° Image Capture
Besides the key frames, we also capture another kind of frames, called
relative frames, which we use to compute the disparity motion fields.
Specifically, for a key frame Ik, we first capture it at its defined position
on the sampling sphere with radially outward viewing direction. We
then capture six relative frames at positions close to the key frame. In
our approach, relative frames are captured on a circle centered at the
key frame position, with a fixed radius of 25 mm in our experiments.
Figure 3b shows the sampling pattern of relative frames in our approach.
Finally, these seven images (shown in Figure 3c) are grouped together
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Fig. 4. Our robotic capture device for real scenes: (a) Schematic drawing
with the main components, and (b) photo of our capture device.
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Fig. 5. Disparity motion fields: (a) Relative frames. (b) Motion fields
{ f 1, f 2, . . . , f 6} between the key frame and each relative frame. (c) Dis-
parity motion curves {CP} for each image patch P in the key frame Ik.

for the next steps. Note that the relative frames are discarded after the
motion field computation, and only the key frames are kept.

To capture the key frames and the corresponding relative frames
for a real scene, we developed the capture device in Figure 4. We use
a robotic arm with three degrees-of-freedom to control the position
and orientation of a camera. We convert sampling coordinates to the
movement of the stepper motors, so that the camera can be placed at the
camera position required by our capture scheme. In our experiments,
we capture a range of 360° horizontally and 40° vertically in steps of
5°. Our device captures the corresponding 72×8=576 key frames and
576×6=3,456 relative frames in less than 2 hours. This time can be
reduced by using faster stepper motors.

4.2 Motion Field Precomputation
In this section, we introduce the computation of the disparity motion
fields from the captured key frames and relative frames, and then discuss
computation of the pairwise motion fields between key frames.

4.2.1 Disparity Motion Fields
Inspired by the motion compensation techniques used in video com-
pression, we use motion fields to synthesize new views, rather than
rely on an estimate of scene depth, which is more difficult to estimate
accurately, particularly for large outdoor scenes. The disparity motion
field defines the 2D flow field from a key frame to any viewpoint sur-
rounding the key frame, and is used to synthesize these novel views.
All disparity motion fields are computed independently.

We start by computing optical flow [44] between the key frame
and all its relative frames. Let us denote the flow fields using F =
{ f 1, f 2, . . . , f 6} (see Figure 5b), where f i(p) is the motion vector for
pixel p in the flow field f i. For storage and computational efficien-
cy, we aggregate the motion vectors of individual pixels p into non-
overlapping image patches P of size 8×8 pixels by averaging them. As
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Fig. 6. Motion field interpolation using the disparity motion fields: (a) The
sampling circle with six relative frames ri and the target viewpoint rt .
(b) The motion vectors of the patch P in the six relative frames (vi

P for
i=1, . . . ,6), and in the target frame t (vt

P).

demonstrated by our results, patch-level motion fields are sufficient for
synthesizing high-quality novel views.

To merge the individual motion vectors of the relative frames into a
single disparity motion field, we propose a curve-based motion repre-
sentation. While the sampling pattern of relative frames is regular by
construction (see Figure 6a), the motion vectors vi

P corresponding to
the relative frames are generally irregular (see Figure 6b). To achieve a
robust motion encoding, we therefore separately encode the magnitude
and direction of motion vectors. We fit an ellipse CP (by least-squares
fitting [34]) to the endpoints of all six motion vectors to encode the mo-
tion magnitude, and separately store the polar angles θ i

P of the motion
vectors vi

P to encode their direction.
The parameters for the ellipses CP and motion directions θ i

P define
our disparity motion fields, which are stored in our final scene represen-
tation. Notice that the fitted curves provide a robust fit to the six input
motion vectors. The estimation errors in individual vectors are reduced
by the fitting. After computing the disparity motion field (e.g. visual-
ized in Figure 5c) for each key frame, we discard all relative frames as
they are not required any more. As we will see in Section 4.3.1, this
representation is well-suited for efficiently interpolating motion fields
for any novel viewpoint near the key frame.

4.2.2 Pairwise Motion Fields

We compute the pairwise motion fields fi→ j between every pair Ii
and I j of neighboring key frames using optical flow [44]. For storage
efficiency, we then again downsample the pairwise motion fields to the
same resolution as the disparity motion fields, i.e. to one motion vector
per patch of 8×8 pixels. These pairwise motion fields are also stored in
our scene representation, and make it complete.

4.3 Novel-View Synthesis

We synthesize novel viewpoints anywhere inside the sampling sphere
using a two-step process: (1) we synthesize a novel viewpoint on
the sampling sphere, with a radially-outward viewing direction (Sec-
tion 4.3.2), and then (2) we warp the synthesized image to match
the desired viewpoint in the sphere, with any viewing direction (Sec-
tion 4.3.3). However, before discussing these steps, we first describe our
approach for interpolating disparity motion fields for a novel viewpoint
(Section 4.3.1), which is used in the first step.

4.3.1 Disparity Motion Field Interpolation

We propose a coordinates transfer scheme to interpolate the disparity
motion field to obtain the motion field for any novel viewpoint (tangent
to the sampling sphere). First, based on the sampling scheme introduced
in Section 4.1 and Figure 3, we represent the sampling positions of a
key frame and its relative frames as the center of a circle and points on
the circle (see Figure 6a). The vectors ri indicate their displacement
relative to the key frame. The position of any novel target viewpoint rt

can be represented similarly.
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Fig. 7. The process of synthesizing a novel view (from two key frames):
(a) The inputs are two key frames, I1 and I2, and their pairwise motion
field f1→2. (b) The two intermediate interpolated images It

1 and It
2, and

the blending flow field f t
1→2 between them. (c) The final target view It .

We next express the direction of the novel viewpoint rt as a linear com-
bination of the nearest two relative frames, e.g. r1 and r2 in Figure 6a,
using θ(rt) = αθ(r1)+βθ(r2) in this case. Here α +β = 1 and θ(r)
denotes the polar angle of the 2D vector r. Then, we use the coefficients
α and β to interpolate the target motion field for this novel viewpoint
using the curve-based motion field CP and θ i

P (see Figure 6b). To be
specific, for a patch P in the key frame, we compute its motion vector
using vt

P=
‖rt‖
‖r1‖CP(α ·θ 1

P +β ·θ 2
P). Here CP(θ) is a motion vector from

the center to the point on the ellipse with the polar angle of θ . We
obtain the target motion field for the novel viewpoint by estimating the
motion vectors for all patches accordingly.

4.3.2 Novel-View Synthesis on the Sampling Sphere
For a target viewpoint on the sampling sphere, we first find its K nearest
key frames, ordered by distance (from nearest to furthest), which we
denote using I1, I2, . . . , IK without loss of generality. Each of the key
frames is used to synthesize a target image It

k via their disparity motion
field, and these target images are then aligned and fused into the final
target image It via flow-based blending with the pairwise motion fields.

First, using the disparity motion field of key frame k, we obtain the
motion field f t

k between Ik and the target image It
k using the interpola-

tion method in Section 4.3.1. Next, we use this disparity-derived motion
field f t

k to synthesize the target view It
k using

It
k(p) = Ik

(
( f t

k)
−1(p)

)
, (1)

where p is a pixel in the target image It
k, and ( f t

k)
−1 transforms the

pixels of the target frame It
k to the key frame Ik. Notice that the motion

field f t
k is originally defined per patch P, and not per pixel p. We thus

use bilinear interpolation on the 2D image domain to smoothly propa-
gate the patch-level motion field to all pixels of the image. Figure 7ab
shows an example for two key frames, I1 and I2, and the target views It

1
and It

2 interpolated from them.
If we simply alpha-blended all interpolated target views It

1, It
2, . . . ,

It
K , the final output It would likely contain ghosting artifacts, because

there is no guarantee that the same pixel on the individually interpolated
target views It

1, It
2, . . . , It

K corresponds to the same scene point. If we
set K=1 (using only the nearest key frame), there will be no ghosting
artifacts, but the viewpoint transition will not be smooth when the used
key frames switches. This is known as ‘popping’ artifacts.

To synthesize a final target image It without ghosting artifacts, we
align the target images of all key frames using flow-based blending.
We estimate the blending motion field f t

1→k using optical flow from
target image It

1 to target image It
k, as shown in Figure 7b. Ideally, the
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Fig. 8. Comparison of our method (right) to stereo panoramas [35] (left) on two synthetic scenes. For each method, we show two stereo pairs viewed
from different viewpoints (left/right). Zoomed crops of each view are shown below each result. Our method preserves head-motion parallax between
different viewpoints, as seen in the displacement of the nearby tree (top) or lamp post (bottom) compared to the trees (top) or shop window (bottom)
in the background. Note that the full views of these results are captured directly from the DK2 headset, which has a lower resolution than the input
images, and applies chromatic aberration compensation for the headset’s optics, resulting in shifted color channels and thus color fringes.

pixel pk = f t
1→k(p1) in It

k should correspond to the same scene point as
pixel p1 in It

1. So, given all the blending motion fields f t
1→k, we get the

corresponding pixel coordinates of the scene point in all the images It
k.

Then we can estimate its final pixel position in It by weighted averaging,
where the weight is inversely proportional to the distance rt

k between
the target viewpoint and key frame k in their sampling circle spaces:

wk = 1−
rt

k

∑
K
i=1 rt

i
, or wk =

wk

∑
K
i=1 wi

=
wk

K−1
(2)

when the weights are normalized to sum to one. Mathematically, we
then fuse the position of the corresponding pixels using

p =
K

∑
k=1

wk · pk, (3)

where p is the final position of the point in the fused target image It .
Next, we calculate the color of the point p by fusing the colors of the
corresponding points in the synthesized images {It

k | k = 1, . . . ,K}:

It(p) =
K

∑
k=1

wk · It
k(pk). (4)

Notice that p may fall between the pixel grid on image It ; we again use
bilinear interpolation on the 2D image plane to estimate the coordinates
of all pks for points p at the center of a pixel grid.

Another obstacle that prevents achieving real-time performance is
the calculation of the blending flow fields f t

i→k. We propose to use the
precomputed disparity and pairwise motion fields (Section 4.2) to infer
f t
i→k, rather than calculate optical flow between the target images It

i and
It
k online. Starting from the target image It

i , we first apply the inverse of
the disparity-derived motion field f t

i , to map pixels into the coordinate
frame of key frame Ii. We then apply the pairwise motion field fi→k to

map to key frame Ik. Finally, we apply the disparity-derived motion field
f t
k , to arrive in the coordinates of the target image It

k. Mathematically,
we can express this using the flow concatenation operator ‘◦’ as

f t
i→k = f t

k ◦ fi→k ◦ ( f t
i )
−1. (5)

The whole synthesis process is illustrated for two key frames in Figure 7.
As flow concatenation is essentially addition, the blending motion fields
f t
i→k can now be computed very efficiently.

To obtain stereoscopic results, we render two separate views, one
for each eye of the head-mounted display.

In our experiments, we use the nearest 2–3 key frames (i.e. K=2,3),
which strikes a suitable balance between synthesis quality and perfor-
mance. To achieve real-time performance, the algorithm in this section
is implemented on the GPU using Direct3D 11 HLSL. We compare the
performance of CPU and GPU implementations in Section 5.

4.3.3 Viewpoint Extension

For a target viewpoint inside the sampling sphere, we first find the
intersection of the target viewing ray and the sampling sphere. We then
synthesize the target image at this intersection point, looking radially
outward, following the method described in the previous section. Fi-
nally, to match the target view, we apply a homography warp that first
rotates the virtual camera from the synthesized to the target viewing
direction on the sampling sphere, and then applies a scaling transform
that approximates the change in viewpoint from the position on the
sphere to the target viewpoint inside the sphere. Although this synthesis
scheme does not exactly reflect the change in perspective resulting
from moving the viewpoint inside the sampling sphere, we find that,
in practice, it is an extremely efficient approximation that nonetheless
produces visually highly compelling results, as demonstrated in the
following section. We restrict the distance between the target viewpoint
and the sampling sphere to be less than a tenth of the diameter of the
sampling sphere. Otherwise, artifacts may appear in the results.
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Fig. 9. Comparison of our method (right) to stereo panoramas [35] (left) on three real scenes. For each method, we show two stereo pairs viewed
from different viewpoints (left/right). Zoomed crops of each view are shown below each result. Top: As our method supports head-motion parallax,
one can see the flowers behind the vase from some viewpoints (right, circled in green), which is not the case for stereo panoaramas (see left half of
figure). Middle: Thanks to motion parallax, one can also look behind the leg of the statue using our method. Bottom: When the headset is rotated,
our method correctly matches the 3D rotation of the bench (with perspective effect), while the stereo panorama only applies a global 2D transform in
image space. Note that the full views of these results are captured directly from the DK2 headset, which has a lower resolution than the input images,
and applies chromatic aberration compensation for the headset’s optics, resulting in shifted color channels and thus color fringes.

5 RESULTS

We perform all experiments on a standard PC with a 3.6 GHz Intel
Core i7 quad-core CPU, 16 GB memory, and an Nvidia GeForce 980
GPU. We use an Oculus Rift Development Kit 2 (‘DK2’ for short) head-
mounted display, which has a display resolution of 960×1080 pixels
for each eye. The valid moving range of a user is 360° horizontally and
40° vertically, and key frames are captured at an interval of 5°. Our
representation requires 216 MB per scene for storing the 72×8 images
and the corresponding two motion fields, which is much less than a full
light-field representation. Our system achieves an average frame rate
of 41.2 Hz on the DK2. In the following, we first compare our solution
to existing stereo panoramas. We then evaluate the main components
of our technique in terms of quality and performance. Please see our
supplemental video for further results and comparisons.

5.1 Comparison

Figures 8 and 9 show the results of our approach compared to exist-
ing stereo panoramas, on synthetic and real scenes, respectively. For
synthetic scenes, we render the input views using Unity, and for real

scenes we use our robotic arm to capture them (see Section 4.1). In both
cases, we then compute motion fields as described in Section 4.2 to
complete our scene representation. We compare our results with stereo
panoramas created by the state-of-the-art Megastereo technique [35].
Unlike Megastereo, our results clearly show head-motion parallax.
Video comparisons are shown in the supplemental video.

Figure 8 shows a comparison on synthetic input images for two
different viewing positions. When changing the viewing position, stereo
panoramas only apply a homography warp, which is mostly horizontal
translation of the shown imagery. In this case, there is no head-motion
parallax. In our results, on the other hand, a change of viewpoint leads
to head-motion parallax, which is visible in the shift of nearby and far
objects relative to each other, such as the trees in the first scene. In the
‘city’ scene, one can clearly see the change of position of the lamp post
compared to the store window behind it.

Figure 9 shows our results on three real-world scenes, compared to
stereo panoramas. The ‘plants’ scene (top) shows a flower pot behind
a vase. In our results, one can clearly see the change of position be-
tween the large vase and the small flower pot behind it. This cannot be
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Nearest Key Frame (NKF) Alpha Blending (AB) Flow Based Blending (FBB)

Fig. 10. Comparison of different novel-view synthesis methods. For each method, the left two columns show two consecutive synthesized images,
while the right column shows their absolute difference. Left: Using only the nearest key frame results in clearly visible differences (known as popping
artifacts) when the nearest key frame for a synthesized view changes. Middle: Alpha blending (between two key frames) hides popping artifacts
by blending multiple synthesized images, but poor alignment results in ghosting artifacts and a blurry synthesized image. Right: Our flow-based
blending approach (here between two key frames) results in crisp synthesized images without popping or ghosting artifacts.

observed in the stereo panorama, where the flower pot is permanently
hidden behind the vase. Stereo panoramas do not provide any new
viewpoints, but instead show a fixed spatial configuration for all head
rotations. In the ‘statue’ scene (middle), one can see behind the statue’s
leg with our approach. In the stereo panorama, the rendered images are
keeping the same positional relationship. Although binocular disparity
provides a sense of depth perception to viewers, head rotation is not
reflected in the results beyond a simple pan, which diminishes the sense
of immersion. The third scene (‘bench’) shows a bench in front of sev-
eral trees. When the head-mounted display is rotated to face the bench,
our approach correctly shows the 3D rotation of the bench and the
resulting change in perspective, while the stereo panorama only applies
a much simpler global transform. Our results reveal the shape of the
bench by enlarging the part of it closest to the viewer. Stereo panoramas
provide essentially the same image contents no matter where the viewer
looks or moves.

Compared with stereo panoramas, which combine all information
into two images, our approach takes advantage of an image-based
representation that also compactly stores the depth information of a
scene. Note that we are not showing any panorama results here (but
we show them in the supplemental video), because they are visually
similar to stereo panoramas.

5.2 Evaluation
To further evaluate our method, we compare three different solutions
for synthesizing novel views:

• Nearest key frame (NKF) renders a novel view using only the
nearest key frame I1 (K=1). The target view is identical to It

1.

• Alpha blending (AB) renders a novel view using the nearest
K=2 key frames. The target views It

1 and It
2 are alpha-blended

without fusing the position of the corresponding pixels. This
corresponds to using p1= p2= p in Equation 4.

• Flow-based blending (FBB) renders a novel view using our full
rendering method, as described in Section 4.3.

5.2.1 View Synthesis Quality
Figure 10 compares the three novel-view synthesis methods on two
real scenes. To better demonstrate their differences, we consider an
HMD path from the position of one key frame to another, and pick
two consecutive result views t and t+1, where the nearest key frame
switches. For a clear comparison, we only show a cropped image region.
We also show video results in the supplemental video.

Using only the nearest key frame (NKF) to synthesize a novel view
results in abrupt changes between frames t and t+1, as the nearest key
frame changes. Alpha-blending (AB) between views synthesized from
multiple key frames suppresses abrupt changes between t and t + 1,
because blending weights change smoothly as the viewpoint changes.

Table 1. Stereo synthesis performance for different blending approaches.

View blending approach 800×600 pixels 960×1080 pixels
Nearest key frame (NKF) 44.9 Hz 20.5 Hz
Alpha blending (AB) 22.0 Hz 9.8 Hz
Naïve flow-based blending (FBB) 2.4 Hz 1.0 Hz

using pairwise motion fields (+pMF) 22.5 Hz 9.9 Hz
implemented on GPU (+GPU) 94.5 Hz 41.2 Hz

However, the views synthesized from different key frames are not
always perfectly aligned (e.g. at object edges), which causes ghosting
artifacts that result in blurry synthesized views (see Figure 10, middle).
In our approach, we perform flow-based blending (FBB), which aligns
the views synthesized from different key frames before blending them.
This removes the ghosting artifacts seen in the alpha-blended result,
and produces a clean, crisp result, even when changing viewpoints.

5.2.2 View Synthesis Performance

Table 1 compares the frame rates of different synthesis methods for
stereoscopic rendering. Our experiments test two resolutions on the
DK2: 800×600 and 960×1080 pixels (the full display resolution).
Comparing these resolution levels, we see an approximately inverse
linear relationship between frame rate and resolution across all methods:
the frame rate is roughly halved when rendering twice as many pixels.

Alpha blending (AB) is nearly twice as expensive (with K = 2) as
using only the nearest key frame (NKF). Naïve flow-based blending,
which computes the blending motion fields f t

i→k using optical flow
during rendering, comes at great computational cost. Using our pre-
computed pairwise motion fields to infer the blending motion fields
f t
i→k dramatically improves performance (‘FBB+pMF’ in Table 1). Our

GPU implementation using Direct3D 11 HLSL (‘FBB+pMF+GPU’)
achieves a further speed-up to more than 40 Hz for the full display
resolution of the DK2 headset. In the supplemental video, we show that
this improvement in performance does not sacrifice rendering quality
compared to online flow-based blending (FBB).

5.3 Discussion

Our approach requires a great many images as input. This increases
the difficulty of recording and affects the efficiency of the motion field
computation. In our experiments, to capture the 72×8×7 = 4,032
input images takes almost 2 hours, and precomputation takes almost 24
hours on a quad-core PC. The main bottleneck in our implementation
is the optical flow computation [44], which takes about 99% of the
time. However, note that our approach is independent of any particular
flow implementation, so in principle any implementation could be
used. Using a real-time optical flow method [17] could reduce our
precomputation to less than one minute.
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Fig. 11. View-synthesis artifacts caused by incorrect motion fields.

In addition, our scene representation has increased storage requirements
compared to stereo panoramas, as it stores hundreds of key frames plus
the associated patch-level disparity and pairwise motion fields. All
this data is required to achieve head-motion parallax, but compression
schemes used for light fields [5, 24] could likely be adapted to reduce
storage requirements by an order of magnitude.

Like previous work on stereo panoramas [1, 35], the quality of our
synthesized views depends mainly on the correctness of the computed
optical flow. If the optical flow contains errors, the final results will
likely contain artifacts. Figure 11 shows an example of such artifacts,
which are caused by incorrect optical flow. In this case, a repetitive
pattern leads to incorrect correspondence and hence poorly synthesized
results. This problem could potentially be ameliorated by enforcing
geometric consistency checks between computed flow fields.

6 CONCLUSION

In this paper, we presented Parallax360 – a novel 360° scene represen-
tation based on two-scale motion fields, i.e. the disparity and pairwise
motion fields. Building on this representation, we propose a complete
system for capturing and representing a real scene, and rendering it in
a VR HMD in real time. Our approach is the first to generate novel
views of a real 360° scene with head-motion parallax in real time. As
shown by our results, our system generates a much more realistic 3D
effect compared to stereo panoramas. Our representation is designed
to handle large real scenes, where the disparity motion fields achieve
implicit depth estimation by a robust curve-fitting technique that filters
out noise, and the precomputed pairwise motion fields guarantee high-
quality flow-based viewpoint synthesis with real-time performance. We
also developed a robotic capture device to automatically and accurately
capture the input images required by our approach.
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