
Supplemental Document:
Egocentric Scene Reconstruction from an Omnidirectional Video

This supplemental document includes an extended review and dis-

cussion of the related work on spherical depth estimation (Section 1).

In Section 2 and Figure 4, we present additional results for our

method, including quantitative and qualitative comparisons as well

as its computational performance. Table 1 summarizes the main

symbols used in the paper.

1 FURTHER RELATED WORK ON
SPHERICAL DEPTH ESTIMATION

Depth maps for spherical images can be estimated from monocular,

binocular or multi-view input.

Monocular. Deep learning has facilitated monocular depth estima-

tion, also for spherical images. Supervised approaches are mostly

trained on synthetic datasets due to the difficulty of acquiring

ground-truth spherical depth maps [Eder et al. 2019; Zioulis et al.

2018]. Accuracy can be improved by fusing predictions for equirect-

angular and cubemap projections [Jiang et al. 2021; Wang et al.

2020b], leveraging the geometric structure of indoor scenes [Jin

et al. 2020; Pintore et al. 2021; Sun et al. 2021; Zeng et al. 2020],

or self-supervised training via view synthesis [Zioulis et al. 2019].

Tateno et al. [2018] introduce an approach for adapting pre-trained

monocular depth estimation for perspective images [Godard et al.

2017; Li et al. 2021; Ranftl et al. 2021] to spherical images using

distortion-aware convolutional filters. However, the performance of

these learning-based approaches highly depends on their training

data. Most spherical image datasets are synthetic and only con-

sider indoor scenes, and the methods therefore tend to perform

poorly on real and/or outdoor scenes. Rey-Area et al. [2022] address

this domain gap by aligning and blending more robust perspective

monocular depth estimation [Ranftl et al. 2021] on tangent images

[Eder et al. 2020]. However, monocular depth estimation is not con-

sistent in scale across multiple views, which makes it difficult to

reconstruct scene geometry from multiple monocular depth maps.

Binocular Stereo. Learning-based spherical stereo methods either

assume a known, fixed camera baseline [Lai et al. 2019; Wang et al.

2020a], or also estimate the relative camera pose [Wang et al. 2018].

They again mostly rely on synthetic training data, making them

unsuitable for real outdoor scenes. Spherical rectification [Li 2008;

Matzen et al. 2017] aligns epipolar lines between a pair of spherical

stereo images. This allows the processing of spherical stereo images

with existing stereo correspondence methods that are designed for

pinhole images. Learning-based correspondence techniques [Saikia

et al. 2019; Teed and Deng 2020] have shown great performance for

perspective images, and they can now also be applied to a rectified

spherical image pair. However, their performance is limited by the

distortion of rectified spherical images compared to perspective

images. To overcome this problem, we create a synthetic spherical

RGBD video dataset for fine-tuning a state-of-the-art perspective

optical flow network [Teed and Deng 2020] on rectified spherical

stereo image pairs. This adapts the optical flow network to the

Table 1. Main symbols used in the main paper.

Symbol Description

𝛼 angular extent of a node, used for calculating the solid angle of a

node (Equation 9)

𝛿 angular disparity (Equation 6)

\ polar angle in spherical binoctree (Equation 8)

𝜙 azimuth angle in spherical binoctree (Equation 8)

𝜙
neigh

angle between baseline and a line from the neighbor camera𝐶
neigh

to the point 𝑃 (Figure 3)

𝜙rect azimuth angle in transverse equirectangular projection

(Equation 12)

𝜙
ref

angle between baseline and a line between a world point and the

center of the reference camera (Figure 3)

𝜎c parameter controlling the color consistency weight 𝑤c

(Equation 14)

𝜎
d

parameter controlling the depth consistency weight 𝑤
d

(Equation 13)

𝜎p parameter controlling the proximity weight 𝑤p (Equation 11)

Δ disparity in pixels (Section 3.1)

Ω solid angle (Equation 9)

𝑏 baseline between two cameras (Equation 6)

𝑑 radial distance (aka depth), e.g. of a point to a camera (Equation 6)

𝑒m slope of the TSDF truncation threshold function (Equation 10)

𝑒n offset of the TSDF truncation threshold function (Equation 10)

𝑑
node

distance between the center point of a node and the center of a

camera (Equation 9)

𝑝 a pixel point corresponding to the 3D point 𝑃 (Equation 11)

𝑡 length used for solid angle calculation in Equation 9

𝑤 width of a 2D image (Section 3.2)

𝑤c color consistency term of TSDF weight (Equation 14)

𝑤
d

depth consistency term of TSDF weight (Equation 13)

𝑤p proximity term of TSDF weight (Equation 11)

𝑤
update

total TSDF weight (Equation 15)

𝐶
neigh

camera center of the neighbor camera (Figure 3)

𝐶
ref

camera center of the capturing/reference camera (Figure 6)

𝐷est
estimated depth map (Equation 10)

𝐷rend
rendered depth map (Equation 16)

𝐷 tri
depth map from triangle center to camera center (Equation 16)

𝐼𝑖 input image for camera/frame 𝑖 (Equation 14)

𝐾 number of neighboring views used for spherical depth estimation

(Section 3.1.5)

𝑀 depth consistency mask (Equation 17)

𝑀∗
blurred depth consistency mask (Equation 18)

𝑀′
soft depth consistency mask (Equation 18)

𝑁 (𝑖) set of neighboring views of view 𝑖 (Equation 15)

𝑂tree origin of the octree (Figure 6)

𝑃 a 3D point (Section 3.1.3, Section 3.2.2)

𝑆 visibility score (Equation 19)

𝑇
solid

solid angle threshold that decides the size of each node

(Section 3.2.2)

𝑇trunc (𝑑) TSDF truncation threshold, a function of depth 𝑑 (Equation 10)

𝑉 (𝑝) visibility ratio for a pixel 𝑝 (Equation 16)

𝑉
node

volume of a spherical frustum (Equation 8)
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specific distortions in rectified spherical images and achieves state-

of-the-art performance, as we demonstrate in Section 2.1.

Multi-view Stereo. Im et al. [2016] pioneered sphere sweeping for

computing depth maps from multiple input views in analogy to

plane sweeping for perspective multi-view stereo [Collins 1996].

Sphere sweeping creates a spherical cost volume from a set of con-

centric virtual spheres that are used to align all input views; winner-

take-all then determines the optimal depth per pixel. Several meth-

ods have extended this traditional cost volume approach to use

learned, deep features, and to regress the output depth map from

the deep cost volume to increase performance [Komatsu et al. 2020;

Won et al. 2019a,b]. However, these methods are limited to depth

map resolutions of only 640×360 pixels, which is insufficient for

high-quality scene geometry reconstruction. da Silveira and Jung

[2019] reconstruct spherical depth maps from multiple pairwise

flow fields, whose contributions are weighted according to the re-

projection error, followed by a guided image filtering post-process.

Recently, Meuleman et al. [2021] proposed a real-time sphere sweep-

ing stereo method using four fisheye images as input. Although

this method produces spherical RGBD videos in real time, it does

not account for temporal coherence of reconstructed RGBD frames.

None of these methods is specialized for 3D reconstruction from

spherical input.

2 ADDITIONAL RESULTS

2.1 Spherical Depth Estimation
In Table 2, we compare the mean absolute error (MAE), RMSE, and

the percentage of bad pixels with an error of more than 0.1 and 0.4

in inverse depth (lower is better for all metrics). Our method outper-

forms all other methods in every measure for every baseline. Table 3

shows a quantitative comparison of constant/adaptive truncation

thresholds and our confidence weights used for TSDF fusion.

We comparemulti-view depth estimation accuracywith Parra Pozo

et al. [2019]. We chose this method as it supports unstructured cam-

era setups and can estimate large field-of-view depth maps. For fair

1

2

4

3 10

Front view Side view

comparison, we placed five spherical

cameras looking in the same direc-

tion in a cross-shaped camera layout

(see right). We rendered 25 sets of

equirectangular images at 1024×512
resolution (5 positions × 5 scenes),

but evaluate the depth accuracy only

on the frontal hemisphere (shown in blue). We feed Parra Pozo

et al.’s pipeline with 180° fisheye images of the frontal hemispheres

and ground-truth camera poses, and estimate the depth map for

the central camera. For our method, we estimate the depth map of

the central camera based on stereo pairs formed with each of the

other four cameras, as described in Section 3.1.4 in the main paper.

Figure 1 shows that our method performs best.

Real scenes often contain dynamic objects, reflections and texture-

less regions, which can be problematic when integrating depth

estimates from different viewpoints or timestamps (see an example

in Figure 2). To handle these problems, we introduce Gaussian-

like weights for proximity weight, depth consistency, and color

consistency, as described in Section 3.2.3 in the main paper.

Table 2. Comparison of two-view spherical depth estimation methods
360SD-Net [Wang et al. 2020a], SGBM [Hirschmüller 2008], GPU-SGM
[Hernandez-Juarez et al. 2016], RAFT [Teed and Deng 2020], and our method.
The columns ‘>0.1’ and ‘>0.4’ show the percentage of bad pixels that exceed
an absolute inverse depth error of 0.1/0.4 [m−1]. Our method significantly
outperforms all others.

Baseline Method >0.1 >0.4 MAE RMSE

10 cm

360SD-Net 73.79 45.09 0.699 0.955

SGBM 16.02 3.98 0.070 0.172

GPU-SGM 17.92 4.18 0.080 0.180

RAFT 13.52 2.57 0.067 0.200

Ours 10.43 0.70 0.041 0.081

20 cm

360SD-Net 52.94 25.53 0.332 0.544

SGBM 14.33 4.23 0.066 0.180

GPU-SGM 15.04 4.60 0.077 0.200

RAFT 10.96 2.21 0.057 0.184

Ours 9.38 0.71 0.036 0.076

30 cm

360SD-Net 44.25 15.59 0.211 0.369

SGBM 14.74 4.91 0.070 0.191

GPU-SGM 15.26 5.34 0.081 0.219

RAFT 10.93 2.43 0.056 0.183

Ours 8.39 0.63 0.032 0.073

40 cm

360SD-Net 39.45 10.69 0.163 0.291

SGBM 15.74 5.53 0.076 0.202

GPU-SGM 16.44 6.35 0.090 0.240

RAFT 10.45 2.51 0.055 0.182

Ours 7.97 0.55 0.030 0.070

mean

360SD-Net 52.61 24.22 0.351 0.540

SGBM 15.21 4.66 0.070 0.186

GPU-SGM 16.17 5.12 0.082 0.210

RAFT 11.46 2.43 0.059 0.187

Ours 7.97 0.55 0.035 0.075

Table 3. Quantitative geometric error for each case in Figure 7 of the main
paper: constant vs adaptive truncation threshold, with and without our
confidence weights. We evaluate the quality of just the mesh pixels (‘Mesh’)
and all pixels (‘Mesh+Skybox’). Completeness (‘Comp.’) is defined as the
proportion of pixels that see the mesh compared to the ground truth. The
confidence weights used for TSDF integration increase the accuracy of the
reconstructed mesh, and the adaptive truncation threshold increases the
mesh completeness.

Mesh only Mesh+Skybox

Comp.

Variants MAE RMSE MAE RMSE %

(b) constant w/o weight 0.022 0.056 0.044 0.099 86.2

(c) adaptive w/o weight 0.025 0.057 0.024 0.057 98.7

(d) constant w/ weight 0.017 0.051 0.019 0.056 96.9

(e) adaptive w/ weight 0.018 0.051 0.017 0.052 98.8

2.2 Performance
We implemented our method on a desktop computer equipped with

an Intel Core i9-10920X processor at 3.5 GHz with 128GB RAM, and

an NVIDIA Titan RTX graphics card. To produce the results of the

Dinosaur scene in Figure 1 and Figure 10 in the main paper, we

used as input a 17-second, handheld spherical video containing 512

frames at a resolution of 5760×2880 pixels. Our implementation took
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1

Color image GT Parra Pozo et al. Ours

Method >0.1 >0.4 MAE RMSE

Parra Pozo et al. [2019] 6.37 0.18 0.033 0.057

Ours 5.56 0.11 0.026 0.044

Fig. 1. Comparison of hemispherical depth maps estimated from five input
views. Our method produces cleaner depth maps with fewer artifacts.

1 Fig. 2. Consistency-based weight map. Top: Input color image. Middle:
Estimated inverse depth map. Incorrect depth from dynamic objects will
be inconsistent with depths from neighbor frames (see highlighted person).
Bottom: Visualization of our depth and color consistency (𝑤d×𝑤c). In-
consistent depths and/or colors results in small weights (e.g., dark person
outline in the left closeup), while consistent depths and colors results in
high weights (e.g., bright regions in the right closeup).

on average 3.15 seconds to estimate one depth map at a resolution

of 1728×864, using 𝐾 =11 neighbor frames. In total, it took about

27 minutes to estimate all depth maps. Fusing the 512 depth maps

into a triangle mesh with 3.6 million faces took 75 seconds overall:

60 seconds are spent on generating the spherical binoctree with

9.8 million nodes using OpenMP, 10 second for updating the TSDF

values on the GPU, and 5 seconds for extracting the mesh using

dual marching cubes. The texture map with 8-pixel triangles has

a size of 9,893×8,543 pixels and is reconstructed on the GPU in 45

seconds. The total run time is less than 30 minutes end-to-end.

20.58 19.84 24.33 26.13
Error map 24.35 21.72 25.65 27.69

GT Parallax360 MegaParallax OmniPhotos Ours

1

0

1

0

Method PSNR SSIM LPIPS

Parallax360 [Luo et al. 2018] 22.47 0.814 0.445

MegaParallax [Bertel et al. 2019] 20.78 0.789 0.450

OmniPhotos [Bertel et al. 2020] 24.99 0.851 0.333

Ours 26.91 0.897 0.259

Fig. 3. Synthesized views and error maps compared to the ground truth.
Top: Rows 1 and 3: Ground-truth color image and synthesized novel views.
Arrows indicate visual artifacts. Rows 2 and 4: Absolute color difference map
between the synthesized novel views and ground truth. Bottom:Quality
of novel-view synthesis, as measured using the PSNR, SSIM [Wang et al.
2004], and LPIPS [Zhang et al. 2018] image similarity metrics.

2.3 Novel-View Synthesis Evaluation
We next evaluate novel-view synthesis results using our textured

meshes compared to state-of-the-art image-based rendering meth-

ods: Parallax360 [Luo et al. 2018], MegaParallax [Bertel et al. 2019],

and OmniPhotos [Bertel et al. 2020]. As input, we rendered a 200-

frame 3-loop horizontal circular trajectory with a radius of 55 cm

in the Sponza scene. To compare the methods, we rendered views

at the center of the circular trajectory. We create our texture map

from 10 frames.

The comparison in Figure 3 shows that our method produces

more accurate novel views with lower errors compared to the other

methods. While Parallax360 and MegaParallax show fewer visual

artifacts due to their smooth proxy geometry, they still introduce

visual distortions that are noticeable in the error maps in Figure 3.

OmniPhotos’s proxy geometry approximates the scene geometry

more closely, which results in better imagemetrics, but some straight

lines in the test scene end up warped. Our method shows the best

results, both visually and quantitatively in Figure 3, as our method is

based on more accurate reconstruction of 3D geometry and texture.
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Fig. 4. Additional results from real scenes captured with a large camera trajectory. First row: A frame of each input video. For each scene—Top: Our
reconstructed textured mesh with cube-map sky-box. Bottom: Our reconstructed geometry.



Supplemental Document: Egocentric Scene Reconstruction from an Omnidirectional Video • 5

REFERENCES
Tobias Bertel, Neill D. F. Campbell, and Christian Richardt. 2019. MegaParallax: Casual

360° Panoramas with Motion Parallax. IEEE Trans. Vis. Comput. Graph. 25, 5 (2019),
1828–1835. doi: 10.1109/TVCG.2019.2898799

Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian Richardt. 2020. OmniPho-

tos: Casual 360° VR Photography. ACM Trans. Graph. 39, 6 (2020), 267:1–12. doi:

10.1145/3414685.3417770

Robert T. Collins. 1996. A space-sweep approach to true multi-image matching. In

CVPR. 358–363. doi: 10.1109/CVPR.1996.517097

Thiago Lopes Trugillo da Silveira and Claudio R. Jung. 2019. Dense 3D Scene Recon-

struction from Multiple Spherical Images for 3-DoF+ VR Applications. In IEEE VR.
9–18. doi: 10.1109/VR.2019.8798281

Marc Eder, Pierre Moulon, and Li Guan. 2019. Pano Popups: Indoor 3D Reconstruction

with a Plane-Aware Network. In 3DV. 76–84. doi: 10.1109/3DV.2019.00018

Marc Eder, Mykhailo Shvets, John Lim, and Jan-Michael Frahm. 2020. Tangent Images

for Mitigating Spherical Distortion. In CVPR. doi: 10.1109/CVPR42600.2020.01244

Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. 2017. Unsupervised Monoc-

ular Depth Estimation with Left-Right Consistency. In CVPR. 6602–6611. doi:

10.1109/CVPR.2017.699

Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David Vázquez,

Juan Carlos Moure, and Antonio M. López. 2016. Embedded Real-time Stereo

Estimation via Semi-Global Matching on the GPU. In International Conference on
Computational Science. 143–153. doi: 10.1016/j.procs.2016.05.305

Heiko Hirschmüller. 2008. Stereo Processing by Semiglobal Matching and Mutual

Information. IEEE Trans. Pattern Anal. 30, 2 (2008), 328–341. doi: 10.1109/TPAMI.

2007.1166

Sunghoon Im, Hyowon Ha, François Rameau, Hae-Gon Jeon, Gyeongmin Choe, and

In So Kweon. 2016. All-around Depth from Small Motionwith A Spherical Panoramic

Camera. In ECCV. doi: 10.1007/978-3-319-46487-9_10

Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui Huang. 2021. UniFuse:

Unidirectional Fusion for 360° Panorama Depth Estimation. IEEE Robotics and
Automation Letters 6, 2 (2021), 1519–1526. doi: 10.1109/LRA.2021.3058957

Lei Jin, Yanyu Xu, Jia Zheng, Junfei Zhang, Rui Tang, Shugong Xu, Jingyi Yu, and

Shenghua Gao. 2020. Geometric Structure Based and Regularized Depth Estimation

From 360 Indoor Imagery. In CVPR. 886–895. doi: 10.1109/CVPR42600.2020.00097

Ren Komatsu, Hiromitsu Fujii, Yusuke Tamura, Atsushi Yamashita, and Hajime Asama.

2020. 360° Depth Estimation from Multiple Fisheye Images with Origami Crown

Representation of Icosahedron. In IROS. doi: 10.1109/IROS45743.2020.9340981

Po Kong Lai, Shuang Xie, Jochen Lang, and Robert Laganière. 2019. Real-time panoramic

depth maps from omni-directional stereo images for 6 DoF videos in virtual reality.

In IEEE VR. 405–412. doi: 10.1109/VR.2019.8798016

Shigang Li. 2008. Binocular Spherical Stereo. IEEE Transactions on Intelligent Trans-
portation Systems 9, 4 (2008), 589–600. doi: 10.1109/TITS.2008.2006736

Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, and

William T. Freeman. 2021. MannequinChallenge: Learning the Depths of Moving

People byWatching Frozen People. IEEE Trans. Pattern Anal. 43, 12 (2021), 4229–4241.
doi: 10.1109/TPAMI.2020.2974454

Bicheng Luo, Feng Xu, Christian Richardt, and Jun-Hai Yong. 2018. Parallax360: Stereo-

scopic 360° Scene Representation for Head-Motion Parallax. IEEE Trans. Vis. Comput.
Graph. 24, 4 (2018), 1545–1553. doi: 10.1109/TVCG.2018.2794071

Kevin Matzen, Michael F. Cohen, Bryce Evans, Johannes Kopf, and Richard Szeliski.

2017. Low-cost 360 Stereo Photography and Video Capture. ACM Trans. Graph. 36,
4 (2017), 148:1–12. doi: 10.1145/3072959.3073645

Andréas Meuleman, Hyeonjoong Jang, Daniel S. Jeon, and Min H. Kim. 2021. Real-

Time Sphere Sweeping Stereo from Multiview Fisheye Images. In CVPR. doi:

10.1109/CVPR46437.2021.01126

Albert Parra Pozo, Michael Toksvig, Terry Filiba Schrager, Joyse Hsu, Uday Mathur,

Alexander Sorkine-Hornung, Rick Szeliski, and Brian Cabral. 2019. An Integrated

6DoF Video Camera and System Design. ACM Trans. Graph. 38, 6 (2019), 216:1–16.
doi: 10.1145/3355089.3356555

Giovanni Pintore, Marco Agus, Eva Almansa, Jens Schneider, and Enrico Gobbetti. 2021.

SliceNet: DeepDenseDepth Estimation From a Single Indoor PanoramaUsing a Slice-

Based Representation. In CVPR. 11531–11540. doi: 10.1109/CVPR46437.2021.01137

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. 2021.

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-

dataset Transfer. IEEE Trans. Pattern Anal. (2021). doi: 10.1109/TPAMI.2020.3019967

Manuel Rey-Area, Mingze Yuan, and Christian Richardt. 2022. 360MonoDepth: High-

Resolution 360° Monocular Depth Estimation. In CVPR. https://manurare.github.io/

360monodepth/

Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and Thomas Brox. 2019.

AutoDispNet: Improving Disparity Estimation With AutoML. In ICCV. 1812–1823.
doi: 10.1109/ICCV.2019.00190

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021. HoHoNet: 360 Indoor Holistic

Understanding with Latent Horizontal Features. In CVPR. 2573–2582. doi: 10.1109/

CVPR46437.2021.00260

Keisuke Tateno, Nassir Navab, and Federico Tombari. 2018. Distortion-Aware Convolu-

tional Filters for Dense Prediction in Panoramic Images. In ECCV. 732–750. doi:

10.1007/978-3-030-01270-0_43

Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms for

Optical Flow. In ECCV. doi: 10.1007/978-3-030-58536-5_24

Fu-En Wang, Hou-Ning Hu, Hsien-Tzu Cheng, Juan-Ting Lin, Shang-Ta Yang, Meng-Li

Shih, Hung-Kuo Chu, and Min Sun. 2018. Self-Supervised Learning of Depth and

Camera Motion from 360° Videos. In ACCV. doi: 10.1007/978-3-030-20873-8_4

Fu-EnWang, Yu-Hsuan Yeh, Min Sun,Wei-Chen Chiu, and Yi-Hsuan Tsai. 2020b. BiFuse:

Monocular 360 Depth Estimation via Bi-Projection Fusion. In CVPR. 462–471. doi:

10.1109/CVPR42600.2020.00054

Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. 2020a.

360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume. In ICRA.
582–588. doi: 10.1109/ICRA40945.2020.9196975

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image

quality assessment: from error visibility to structural similarity. IEEE Trans. Image
Process. 13, 4 (2004), 600–612. doi: 10.1109/TIP.2003.819861

ChangheeWon, Jongbin Ryu, and Jongwoo Lim. 2019a. OmniMVS: End-to-End Learning

for Omnidirectional Stereo Matching. In ICCV. 8986–8995. doi: 10.1109/ICCV.2019.

00908

Changhee Won, Jongbin Ryu, and Jongwoo Lim. 2019b. SweepNet: Wide-baseline

Omnidirectional Depth Estimation. In ICRA. doi: 10.1109/ICRA.2019.8793823

Wei Zeng, Sezer Karaoglu, and Theo Gevers. 2020. Joint 3D Layout and Depth Prediction

from a Single Indoor Panorama Image. In ECCV. doi: 10.1007/978-3-030-58517-4_39
Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.
doi: 10.1109/CVPR.2018.00068

Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, Federico Alvarez, and Petros

Daras. 2019. Spherical View Synthesis for Self-Supervised 360° Depth Estimation.

In 3DV. 690–699. doi: 10.1109/3DV.2019.00081

Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, and Petros Daras. 2018.

OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas. In ECCV.
448–465. doi: 10.1007/978-3-030-01231-1_28

https://doi.org/10.1109/TVCG.2019.2898799
https://doi.org/10.1145/3414685.3417770
https://doi.org/10.1109/CVPR.1996.517097
https://doi.org/10.1109/VR.2019.8798281
https://doi.org/10.1109/3DV.2019.00018
https://doi.org/10.1109/CVPR42600.2020.01244
https://doi.org/10.1109/CVPR.2017.699
https://doi.org/10.1016/j.procs.2016.05.305
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1007/978-3-319-46487-9_10
https://doi.org/10.1109/LRA.2021.3058957
https://doi.org/10.1109/CVPR42600.2020.00097
https://doi.org/10.1109/IROS45743.2020.9340981
https://doi.org/10.1109/VR.2019.8798016
https://doi.org/10.1109/TITS.2008.2006736
https://doi.org/10.1109/TPAMI.2020.2974454
https://doi.org/10.1109/TVCG.2018.2794071
https://doi.org/10.1145/3072959.3073645
https://doi.org/10.1109/CVPR46437.2021.01126
https://doi.org/10.1145/3355089.3356555
https://doi.org/10.1109/CVPR46437.2021.01137
https://doi.org/10.1109/TPAMI.2020.3019967
https://manurare.github.io/360monodepth/
https://manurare.github.io/360monodepth/
https://doi.org/10.1109/ICCV.2019.00190
https://doi.org/10.1109/CVPR46437.2021.00260
https://doi.org/10.1109/CVPR46437.2021.00260
https://doi.org/10.1007/978-3-030-01270-0_43
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1007/978-3-030-20873-8_4
https://doi.org/10.1109/CVPR42600.2020.00054
https://doi.org/10.1109/ICRA40945.2020.9196975
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ICCV.2019.00908
https://doi.org/10.1109/ICCV.2019.00908
https://doi.org/10.1109/ICRA.2019.8793823
https://doi.org/10.1007/978-3-030-58517-4_39
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/3DV.2019.00081
https://doi.org/10.1007/978-3-030-01231-1_28

	1 Further Related Work onSpherical Depth Estimation
	2 Additional Results
	2.1 Spherical Depth Estimation
	2.2 Performance
	2.3 Novel-View Synthesis Evaluation

	References

