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1. Initialization and Implementation
The input to our video depth-from-defocus approach is a
radiometrically linearized video with temporally changing
focus distances containing one or more focus ramps, but
with otherwise constant camera settings. We assume that we
know camera properties such as the focal length, aperture
f -number, sensor size, as well as temporally sparse readings
of the camera’s focus distances for some video frames.

Focus Distance Initialization Before the start of our algo-
rithm in Section 4 of the main paper, we compute an initial
set of temporally dense focus distance values. We use the
sparse timestamped focus distance readings from the Magic
Lantern firmware as starting point, see Section 3 in the main
paper. We then solve for the per-frame focus distances F us-
ing an energy minimization with the recorded focus data as
data term, and additional smoothness and focus-consistency
regularization terms:

argmin
F

Efocus
data + λfsE

focus
smoothness + λfocusEfocus. (1)

The recorded focus distances F rec
t are available only for

some frames t ∈ Trec, so we constrain the unknown focus
distances Ft at those frames to lie close to them:

Efocus
data =

∑
t∈Trec

‖Ft − F rec
t ‖

2 . (2)

As the focus is assumed to change smoothly over time, we
enforce this by penalizing the second derivative of the focus
distances:

Efocus
smoothness =

∑
t

‖Ft−1 − 2Ft + Ft+1‖2 . (3)

The focus-consistency term exploits the observation that sim-
ilar focus distances result in similar depth-of-field and hence
similar images, so if video frames appear very similar, then
their focus distances should also be similar (see Figure 1):

Efocus =
∑
t

∑
s6=t

st,s ‖Ft − Fs‖2 , (4)

where st,s measures the (symmetric) similarity of the in-
put video frames Vt and Vs, so that more similar frames
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Figure 1. Focus distance initialization yields a smooth initial focus
curve from sparse Magic Lantern data. Similar images according
to st,s (Equation 5) enforce consistent focus distances.

enforce consistency constraints more strongly. We compute
the similarity using

st,s = min(0, 1−min(dt,s, ds,t) /τsim) , (5)

based on the image dissimilarity dt,s which we compute
using the RMSE between input frames Vt and Vs warped
to Vt using low-resolution (160×90) optical flow to com-
pensate for camera and scene motion. The similarity thresh-
old τsim determines which pairs of input frames result in
consistency constraints and how strongly they are enforced.
Typical parameter values are λfs =

√
10, λfocus = 0.1 and

τsim∈ [0.01, 0.05].

1.1. Implementation of Video Depth-From-Defocus
Algorithm

To implement our method from Section 4 (main paper), we
use a multi-resolution approach with three levels to improve
the convergence and visual quality of our results, as im-
age defocus is more similar at coarser image resolutions.
At each pyramid level, we perform three iterations of the
stages described in Sections 4.1 to 4.4 of the main paper.
At the coarsest level, we start the first iteration assuming
that the all-in-focus image It is the input video frame Vt,
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and also initialize our PatchMatch correspondences using
optical flow [6] to provide a good starting point for our align-
ment computations. Between pyramid levels, we bilinearly
upsample the all-in-focus images It, depth maps Dt and all
computed flow fields. We use scale-adjusted patch sizes for
PatchMatch, using 25×25 pixels at the finest level and 7×7
at the coarsest.

Computation Times Our all-in-focus RGB-D video es-
timation approach processes 30 video frames at 854×480
resolution in 4 hours on a 30-core 2.8 GHz processor with
256 GB memory. This runtime breaks down as follows, per
video frame: 8.6 minutes for defocus-preserving alignment,
19 minutes for depth estimation, 2.4 minutes for defocus
deblurring, and 5 seconds for focus distance refinement. Our
MATLAB implementation is unoptimized, but parallelized
over the input video frames. We believe an optimized, pos-
sibly GPU-assisted implementation would yield significant
speed-ups.

2. Results
We show additional all-in-focus images and depth map re-
sults on a range of datasets in Figure 2.

3. Evaluation of Focus Distance Refinement
Here, we investigate the contribution of the focus distance
refinement (Figure 3 and Section 4.4 in the main paper) to
estimating better all-in-focus images and recovering from
inaccurate initial focus distances. For this, we process the
synthetically refocused ‘alley_1’ dataset from MPI-Sintel [2]
with initial focus distances perturbed by varying degrees of
additive Gaussian noise (but without imaging noise), with
and without our focus distance refinement, and compare
the all-in-focus images and estimated focus distances to
the ground truth. Figure 4 shows that our focus distance
refinement consistently reduces the errors in estimated fo-
cus distances. This in turn leads to better refocusing results
for our defocus-preserving alignment (Section 4.1 in the
main paper), which produces cleaner all-in-focus images
and improves the overall performance of our approach.

4. Applications of Video Depth-From-Defocus

Video Refocusing Given the estimated all-in-focus images
and depth maps, we can now freely refocus the original input
video according to the user’s wishes by simply rendering
the appropriate defocus blur in a post-process. For this, we
use the same thin-lens defocus model as in Section 3 of the
main paper, and blur each pixel’s neighborhood with the blur
kernel K(D(x), F ) corresponding to its depth D(x) and
the focus distance F of the virtual lens [5]. This approach
provides complete freedom, as the camera’s aperture, focal
length and focus distance can be changed independently
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KEYBOARD dataset (static scene with moving camera, 38 frames, 1 focus ramp)
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PLANT dataset (static scene with moving camera, 37 frames, 1 focus ramp)
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TALKING2 dataset (dynamic scene with moving camera, 317 frames, 4 focus ramps)
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Figure 2. RGB-D video results. We show reconstructed all-in-focus
images and depth maps for three focus sweep videos with various
combinations of scene and camera motion. The image crops (top:
input frame cropped, bottom: all-in-focus images cropped) focus
on regions at the near, middle and far end (from left to right) of the
scene’s depth range. Note that each input frame is in focus in only
one of the three crops, while our all-in-focus images are in focus
everywhere. Please zoom in to see more details.
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Figure 3. We refine focus distances by refocusing input frames to
each frame t, and minimizing the difference to the frame Vt warped
to each of the refocused input images (Equation 9 in main paper).

and arbitrarily. The user can for example change the aper-
ture, while keeping the original focus settings, to reduce or
magnify the defocus blur (see Figure 5), similar to Bae and
Durand [1], but for videos. The focus can also be fixed on
an object of interest or follow it through the video using a
‘focus pull’, or the focus can be interactively controlled by
the user using a ‘focus-follow’ function that keeps the region
under the user’s mouse pointer in focus. The reconstructed
focus settings can also be smoothed to correct auto-focus
failures and produce a more professional-looking result.

Tilt-Shift Videography The tilt-shift effect is created by
tilting the camera’s lens relative to its image plane which
results in a slanted focus plane with a wedge-shaped depth
of field that produces the iconic miniature look [3]. (The
purpose of lens shift is to correct for perspective distortions
like converging parallel lines; however, it does not affect
the focus plane or depth of field.) While the lens in most
view cameras can be tilted and shifted freely thanks to the
flexible bellows between lens and film, most lenses in mod-
ern cameras are fixed to be parallel to the image sensor,
which prevents this effect. There are some special-purpose
tilt-shift lenses for modern cameras, e.g. from Canon, Nikon
or Lensbaby, which can be expensive, but the tilt-shift look is
baked into the recorded footage and cannot be modified after
capture. We show virtual tilt-shift videography in Figure 5
and our video by refocusing with a tilted virtual lens [4].
This provides ultimate flexibility as the desired look can be
modified and tweaked interactively.

Dolly Zoom Depth maps also enable other applications
such as limited novel-view synthesis. When combined with
the video refocusing presented earlier, this provides the two
ingredients required for a dolly zoom (or ‘Hitchcock Zoom’):
a camera on a virtual dolly that moves towards or away from
the scene, and a carefully controlled virtual camera zoom that
keeps an object of interest at constant size (see supplemental
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Figure 4. Focus distance refinement improves the focus estimates
and all-in-focus images when the initial focus distances are inac-
curate or noisy. Top: Plot of noise level versus RMSE of focus
distances compared to the ground truth; note that refinement consis-
tently reduces the error. Bottom: Crops of a single frame for noise
level σ= 10 cm. Without refinement, the all-in-focus images are
distorted and lack details; with refinement, the image is close to the
ground truth.

video). Assuming thin-lens optics, this is achieved by varying
the focal length f and object-to-lens distance u such that
the magnification M = f/(u−f) remains constant for the
selected object.
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Figure 5. Video refocusing results. We first synthetically refocus the input video, then increase the defocus blur by increasing the aperture
(smaller f -number), and finally apply a virtual tilt-shift effect, which results in a slanted focus plane. Please see our video for full results.


