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1 Sequence details

Table 1 lists details on all input sequences, including the complexity of the used
models and optimization results.

Sequence Source #
Cameras

#
Frames

Motion Environment Ground truth
Input

resolution

Stage I

runtime

Stage II

runtime

Walk [1] 6 100 walking

outdoor,

moving background,

ambiguous color

� 320×180 123 24

Cathedral [2] 4 20
runing,

falling
outdoor � 240×140 32 5

Subject3 Our 3 100 volleyball
outdoor,

cluttered background
shape laser scan 180×90 65 15

Subject2 Our 6 100 gymnastics
studio,

few colors
shape laser scan 200×160 62 15

Subject1 Our 6 100 gymnastics
studio,

few colors
shape laser scan 200×160 68 18

HumanEva-Walk [3] 3 586 walking
studio,

low-quality image

markers,

manual silhouettes
160×120 176 42

HumanEva-Box [3] 3 382 boxing
studio,

low-quality image

markers,

manual silhouettes
160×120 113 65

Marker [1] 2 100 walking studio
markers,

joint positions
128×128 22 8

Skirt [4] 6 100 dancing
studio,

green screen
� 128×128 97 28

Monocular [5] 1 3×1 posing
studio,

segmented

multi-view

reconstruction
125×125 � 0.3

Studio [6] 10
4 (300

tracking)

gymnastics,

walking
studio � 162×121 14 1.5

Table 1. List of sequences used in our paper and their characteristics. `Input resolution'
refers to the resolution used by our algorithm, not the original video resolution. Runtime
is measured in minutes.
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2 Implementation details of Stage I

The main document only outlines Stage I, the lifting of 2D skeletal joint detec-
tions to a consistent 3D skeleton, as it is not the main contribution of our work,
and well-founded solutions already exist [7�9]. Here we give additional details
on our implementation.

For detecting joints in images, we use the unary potential output from the
ConvNet-based body-part detector by Tompson et al. [10]. It outputs a heat
map Dc,t,j for each camera c, frame t and joint j, which contains per-pixel
likelihoods to be covered by joint j. This estimation is performed separately for
each frame t and camera c. There is no direct, one-to-one correspondence between
detection and skeleton joint, as heat maps localize joint positions only roughly
and are in general multi-modal due to detection ambiguities and the presence of
multiple people. To nevertheless �nd a good match between 3D skeleton and 2D
projection, we introduce Edetection, which measures the overlap of the heat maps
D with the projected skeleton joints in terms of Gaussian overlap. Each joint in
the model skeleton has an attached colored 3D joint-Gaussian Gj . The detection
heat maps and joint-Gaussians (colored blobs) are both shown in the overview
Figure 1 (main paper). Each Gaussian is projected into each camera view using
the projection model of Rhodin et al. [11]. It de�nes the visibility Vj(u, v) of
Gaussian Gj as seen from pixel (u, v) in the heat map. The energy term Edetection

thus measures the overlap of each Gaussian with the corresponding heat map:

Edetection(c, t,pt, s) = −
∑
(u,v)

∑
j

Vj(u, v,pt, s) · Dc,t,j . (1)

As Edetection is non-convex, we employ a hierarchical optimization approach.

In level I, the coarse skeleton position and orientation is determined. For this,
we set joint-Gaussians to have large support (standard deviation of σ=1m), and
only optimize the rigid skeleton pose based on the torso joints for the �rst frame
of the sequence. Level II re�nes the global pose across the whole sequence (in
our experiments around 100 frames) with medium-sized Gaussians (σ=0.4m).
Level III adjusts bone length by optimizing the shape s. Level IV adds elbow
and knee joints with σ = 0.1m. Level V adds the remaining wrist and ankle
joints. We observed that enabling self-occlusion for leg-Gaussians and ignoring
occlusion for torso and arm joints gives best results overall.

2.1 Automatic vs. manual actor model

Our reconstructed actor model provides the Gaussian parameters and underly-
ing skeleton dimensions. We tested our model's applicability to the volumetric
Gaussian representations proposed by Stoll et al. [6] and Rhodin et al. [11] on the
Marker and Walking sequences, with 3 and 10 cameras, respectively. We found
that our automatically generated model matches their manually initialized and
hand-crafted body dimensions, see Figure 1.
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Fig. 1. Comparison of the estimated actor models for the Walk sequence (top) and
Marker sequence (bottom) to the manually created skeletons of Stoll et al. [6] and
Elhayek et al. [1]. For comparison between methods, we represent Gaussians as spheres
with radius equal to one standard deviation.

We additionally tested the model quality by tracking the same sequence once
with the automatically estimated body model and once with the original, man-
ually created models. The overall tracking performance of our model was equiv-
alent to Rhodin et al.'s model, and improved on Stoll et al.'s model. Tracking
results are shown in the supplemental video.

2.2 Body shape space generalization

We qualitatively assess the generalization capability of our body shape model by
comparing against representing meshes directly as a vector of vertex positions
[12], and using per-triangle rotation and shear with respect to a rest shape,
similar to SCAPE [13]. For each database mesh instance, we build a combined
feature vector by stacking (γi,bi), vertex positions vi, and per-triangle shear ai
into a single vector. We perform PCA on the combined features, which generates
principal vectors that jointly express the variation in all three representations. To
test generalization capability, we explore di�erent PCA coe�cients and analyze
the mesh predicted by each representation.

Our volumetric skinning is computationally more e�cient than per-triangle
encodings, SCAPE-like model [13], as per-triangle deformations `explode' the
mesh, and fusing requires solving a linear system, while still yielding comparable
shape generalization, see Figure 2. Direct encoding in terms of vertex positions
is as e�cient as our volumetric skinning � in both cases, vertex positions depend
linearly on the PCA coe�cients �, however, it exhibits stronger artifacts, see
Figure 2. We believe this is due to the coupling of each vertex to neighboring
Gaussians in our model, which introduces an implicit spatial smoothing regular-
ization. Each vertex is in�uenced by multiple Gaussians, and each Gaussian was
registered based on all neighboring vertices, which compensates for inaccuracies
in the mesh registration.
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Vertex positions SCAPE-like Our volumetric skinning Vertex positions SCAPE-like Our volumetric skinning

Fig. 2. Comparison of PCA body shape spaces: vertex positions, SCAPE-like per-
triangle transformations, and our volumetric skinning. Our volumetric skinning is com-
putationally as e�cient as vertex encodings, and yields comparable shape generaliza-
tion to the SCAPE-like method.

2.3 Model components

We quantitatively assess the contribution of each of our model components by
comparing estimated poses to the marker-based ground truth of the Marker se-
quence of Elhayek et al. [1]. We execute all algorithm variants on 3 camera views
and 100 frames, the mean Euclidean joint error is plotted in Figure 3. Stage II
consistently improves the initial estimates of Stage I. Without the smoothness
term Esmooth, temporal jitter emerged. Disregarding contour direction and im-
age gradient direction in Econtour results in doubling the reconstruction error,
which indicates that the integration of contour direction is crucial for the success
of the proposed algorithm.

The in�uence of using only two or three cameras is analyzed on the same
sequence, see Figure 4. Automatic reconstruction with three cameras is as accu-
rate as tracking with the handcrafted model and method of Rhodin et al. [11].
Pose reconstruction from only two cameras is still accurate for large parts of the
sequence, and sometimes more accurate than tracking with two cameras and a
manual actor model. Dramatic errors occur only occasionally in the second half
of the sequence. Shape estimation nevertheless succeeds due to the robustness
provided by the underlaying parametric model. Please note that our skeleton
model has a slightly di�erent structure than the ground-truth skeleton, which
likely explains some of the error.

In our experiments Esmooth is weighted by 0.01 and E�at by 0.05.
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Fig. 3. Model component in�uence evaluation. All model components are important:
stage II consistently improves on stage I; smoothness term Esmooth removes temporal
jitter; and without contour direction in Econtour the reconstruction error doubled.
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Fig. 4. In�uence of the number of camera views. Using three cameras, our reconstruc-
tion is as accurate as tracking with the manual model. It is still accurate for two
cameras for large parts of the sequence.
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